Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke researchers report technique to make more-uniform ’buckytubes’

29.10.2002


Duke University chemists report they have made a significant advance toward producing tiny hollow tubes of carbon atoms, called "nanotubes," with electronic properties reliable enough to use in molecular-sized circuits.

In a report posted Oct. 28, 2002, in the online version of the Journal of the American Chemical Society, the Duke group described a method to synthesize starting catalytic "nanocluster" particles of identical size that, in turn, can foster the growth of carbon nanotubes that vary in size far less than those produced previously.

"This is really a first step toward a big future," said Jie Liu, a Duke associate professor of chemistry and the group’s leader, of the unprecedented nanotube uniformity they achieved using this process.



Sometimes called "buckytubes," carbon nanotubes’ properties were first studied by Japanese researchers in the early 1990s. The nanotubes, measuring just billionths of a meter in diameter (nano means "billionths"), were found to be lightweight but exceptionally strong, with unusual electronic properties.

Depending upon their atomic arrangements, nanotubes can act like conducting metals or like semiconductors, Liu said.

Since microelectronic devices such as computer chips use both semiconductors and metals, researchers foresee nanotubes as the building blocks for even smaller electronic circuitry than the millionths-of-a-meter scale resolutions of today’s microchips.

However, "controlling the electronic properties of the nanotubes is becoming the biggest bottleneck that limits the development of nanotube research," Liu said in an interview.

The control problem arises because those electronic properties vary with the way nanotubes’ atoms are arranged. And how their atoms are arranged is directly tied to the nanotubes’ diameters -- which, until the fabrication advance by Liu and his colleagues, could vary considerably.

In their journal report, Liu’s graduate student Lei An, Liu and two University of North Carolina at Chapel Hill researchers describe a technique for growing nanotubes with diameters that varied by about 17 percent.

Using a technique called chemical vapor deposition, An and Liu sprouted the nanotubes from tiny catalyst particles called "nanoclusters." The researchers were able to make each of the nanoclusters completely identical.

"We have shown quite convincingly that by controlling the size of the starting catalyst we can control the diameter of the nanotubes," Liu said. "This is the first time that an identical catalyst has been used.

"The ultimate goal of the research is to produce multiple identical nanotubes using the same kind of catalyst particle," said Liu. "We’re still pretty far from there. But it really represents a step forward to show that we have a collection of identical catalyst particles to start with."

The specific nanocluster made in An and Liu’s Duke laboratory is one of a large family of catalytic molecules based on molybdenum oxide, he said.

Their nanoclusters contain 30 iron and 84 molybdenum atoms, plus carbon, hydrogen and oxygen atoms. While such clusters are not available from chemical supply houses, they are quite easy to make, Liu said. "And because it’s so easy to make these clusters, it should also be easy to scale up to make large amounts of catalyst and large amounts of nanotubes," he said.

The researchers credited the use of a growth-regulating chemical called 3-aminopropyltriethoxysilane (APTES) for achieving more-uniform nanotubes diameters. The APTES kept the nanocluster particles confined to separate islands of discrete size as the nanotubes budded from a silicon dioxide surface.

If researchers can precisely control the nanotubes’ diameters, said Liu, the researchers hope in the near future to make pure semiconducting and pure metallic nanotubes. "All the samples we are able to make now are a mix of metallic and semiconducting tubes," he said.

Carbon nanotubes are sometimes called buckytubes because of their structural similarities to carbon-based polyhedral molecules called buckminsterfullerenes, or "buckyballs." Pioneering work with buckyballs won a Nobel Prize for Richard Smalley’s research group at Rice University, where Liu did postdoctoral work before coming to Duke.

The problems controlling nanotubes’ electronic properties were recently noted in a news feature in the Oct. 10, 2002, issue of the journal Nature. "These difficulties may not be insurmountable," that article said, "but they have persuaded some scientists to turn their attention elsewehere."

In 2001, IBM researchers announced a "constructive destruction" method for separating semiconducting from metallic nanotubes by destroying the metallic ones with bursts of electricity.

An IBM news release said that other researchers have found semiconducting carbon nanotubes should be able to perform as well as silicon when configured into transistors. But nanotubes’ molecular-scale sizes could result in computers that are smaller and operate faster using less power than today’s silicon-based technology.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>