Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life in a greenhouse world

28.10.2002


What constrained the evolution of life during the very hot early Earth? Was a simple drop in temperature largely responsible for the emergence of cyanobacteria, a large and varied group of bacteria with chlorophyll that carry out photosynthesis in the presence of light and air with concomitant production of oxygen? Was it a reduction in carbon-dioxide levels?



Geochemist David Schwartzman of Howard University and Ken Caldeira of the Climate and Carbon Cycle Group at Lawrence Livermore National Laboratory have a different view. Looking at how feedback operates in Earth systems, they propose that the transition from a carbon-dioxide dominated greenhouse world to one dominated by methane actually did the trick.

Schwartzman and Caldeira will present findings of their research on Monday, October 28, at the annual meeting of the Geological Society of America in Denver, CO.


It’s been argued that surface temperatures of 80-60 degrees centigrade kept the lid on evolution during the carbon-dioxide dominated greenhouse world of 3.8 to 2.5 billion years ago. Dominant forms of life were very simple, consisting of prokaryotes (cells without nuclei that reproduce asexually) and eucaryotes (more advanced cells with nuclei). Metazoa, the animal kingdom, did not emerge until 0.7 to 1.5 billion year ago, when temperatures apparently dropped below their upper limit.

"I have argued that primitive organisms emerged once their upper temperature limit was reached as the relatively high climatic temperatures of the Archean declined," says Schwartzman. "It appeared likely that methane replaced carbon dioxide as the dominant gas in the greenhouse atmosphere of early Earth by about 2.8 billion years ago. So we began to look at the dynamics of methane dominance, reduced levels of CO2, reduced surface temperatures, and the appearance of cyanobacteria. The question that arose for me is, ’Is it a coincidence that the first good evidence for methane as a significant component of Earth’s atmosphere occurred at the same time as analogous evidence for the first cyanobacteria?’"

Schwartzman and Caldeira followed up the proposal of Charles Dismukes and coworkers that now extinct bacteria were performing oxygen-based photosynthesis before cyanobacteria came onto the scene. In a CO2 dominated world, these early oxygenic photosynthesizers split bicarbonate instead of water as the source of oxygen. They apparently boosted organic productivity and caused greater methane production by methanogens living in the ocean.

"It takes far less methane to maintain climatic temperatures than it does carbon dioxide," says Schwartzman.

As methane became dominant, CO2 levels dropped dramatically. Cyanobacteria then emerged and began oxygenic photosynthesis by splitting water as the source of oxygen. According to Schwartzman, only when atmospheric oxygen levels began to rise some 2.2 billion years ago did a CO2-concentrating mechanism emerge, an adaptation to declining CO2/02 ratios in the external environment.

Thus, global constraints on evolution appeared to have included carbon dioxide as well as oxygen levels in the atmosphere along with surface temperature. All the former have been strongly influenced by biological evolution in a complex set of feedbacks, an essential aspect of biospheric evolution. "The classical paradigm of evolution, that changes in the local environment lead to natural selection, should be rethought to include these feedbacks on a global scale. We hope that our hypothesis will be tested by looking more closely at the extant geologic record of the proposed transition as well as the insights from the study of photosynthesis and molecular biology of modern organisms," says Schwartzman.


CONTACT INFORMATION

During the GSA Annual Meeting, Oct. 27-30, contact Christa Stratton at the GSA Newsroom in the Colorado Convention Center, Denver, Colorado, for assistance and to arrange for interviews: 303-228-8565.

The abstract for this presentation is available at: http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_44609.htm

Post-meeting contact information:

David W. Schwartzman
Dept. of Biology
Howard University
Washington, DC 20059
acairns@geosociety.orgdws@scs.howard.edu
202-806-6926

Ann Cairns
Director of Communications
Geological Society of America
acairns@geosociety.org
303-357-1056


Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org/
http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_44609.htm

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>