Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inside fossil embryos of Earth’s earliest animals

28.10.2002


The shapes and internal structures of individual cells within some of the earliest multicellular animals have been revealed for the first time using technology normally associated with hospitals.



Paleontologists Whitey Hagadorn of Amherst College and Shuhai Xiao of Tulane University have revealed the internal structure of 600-million-year-old fossilized embryos using specialized microscopic three-dimensional x-ray computer tomography (microCT). Hagadorn will present preliminary findings from the ongoing research at the annual meeting of the Geological Society of America on Monday, October 28, in Denver, CO.

"It’s not something you come across everyday, so when you do you grab your hat and dive in," said Hagadorn, regarding the rare Doushantuo phosphorite deposits in the Weng’an region of South China. Unlike most sedimentary deposits, the Doushantuo contains mineral crystals so remarkably miniscule that they can petrify and preserve cellular-level structures.


Although the microfossils of the Doushantuo have been previously studied under scanning electron microscopes, portions of their internal structure could not be figured out without slicing them up and destroying them in the process. To get around this, Hagadorn and Xiao employed the latest microCT technology to generate tantalizing preliminary images of nine animal embryos, three algal forms, and two still-undetermined fossils.

The 3-D images catch embryos in mid-development and make it possible to count cells in the embryos, discern the shapes and arrangements of the cells and even discern what might be structures within the cells. "By all accounts, it looks like there is a lot of information," said Hagadorn.

As for just what kind of animals these fossil embryos might be, that’s still a big, controversial question, says Hagadorn. The animal groups they could represent include soft-bodied cnidarians (e.g. jellyfish, anemones), poriferans (e.g., sponges) or other organisms. "There’s a lot of debate on that," he said. "No one out there has good enough data to confidently say what metazoan groups are represented by these embryos."

The Doushantuo phosphorite formation dates from 555 to 600 million years ago, which makes the fossil embryos good candidates for beating out the current oldest animal fossils: 555-million-year-old soft-bodied mollusks from the White Sea in Russia. But more important than setting records, says Hagadorn, is what the fossils might tell us about the early evolution of animals and the kind of environment they lived in. For instance, it might be possible to look at series of 600-million-year-old animal embryos that represent various stages of embryological development and compare them to the various development patterns of animal embryos today. "It speaks to the issue of where we come from," said Hagadorn.

The microCT works similarly to the CT scanners used to peer inside patients in hospitals. In both cases x-rays are used to non-destructively create a three-dimensional image out of a series of two-dimensional cross sections that showing different densities of materials inside an object. The difference is that CT scans of people require that the scanners rotate around the patient and that the smallest amount of x-rays is used to protect patients from excessive radiation.

X-rays don’t harm rocks, however, so far more x-rays can be shot through them and even focused into tight beams to create microscopic images with a resolution on the scale of microns. That’s essential in looking at fossil algae with range from about one to 20 microns across, and fossil embryos, which are 70 to 500 microns in diameter, says Hagadorn. What’s more, rocks can be rotated instead of the scanners – which means there is less vibration during the imaging process, leading to sharper images.

Although microCT technology has been around for a few years, says Hagadorn, no one had previously thought to apply it to the Doushantuo fossils before. "So what we have here is a huge opportunity," said Hagadorn.


CONTACT INFORMATION

During the GSA Annual Meeting, Oct. 27-30, contact Christa Stratton at the GSA Newsroom in the Colorado Convention Center, Denver, Colorado, for assistance and to arrange for interviews: 303-228-8565.


The abstract for this presentation is available at: http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_39474.htm

Post-meeting contact information:

James W. Hagadorn
Dept. of Geology
Amherst College
Amherst, MA 01200
jwhagadorn@amherst.edu
413-542-2714

Ann Cairns
Director of Communications
Geological Society of America
acairns@geosociety.org
303-357-1056

Ann Cairns | EurekAlert!
Further information:
http://www.geosociety.org/
http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_39474.htm

More articles from Life Sciences:

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs

18.08.2017 | Life Sciences

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>