Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution upset: Oxygen-making microbes came last, not first

25.10.2002


Get ready to rewrite those biology textbooks – again. Although the "lowly" blue-green algae, or Cyanobacteria, have long been credited as one of Earth’s earliest life forms and the source of the oxygen in the early Earth’s atmosphere, they might be neither.

By creating a new genetic family tree of the world’s most primitive bacteria and comparing it to the geochemistry of ancient iron and sulfur deposits, Carrine Blank of Washington University has found evidence that instead of Cyanobacteria being very ancient, they may have appeared much later, perhaps as much as a billion years later, than previously assumed. Blank will present the results of her research at the annual meeting of the Geological Society of America in Denver on Tuesday, Oct. 29.

"What paleontologists and geologists have had to do is reconstruct evolutionary events because biologists haven’t had a very good evolutionary tree of bacteria," says Blank. To get a better family tree, Blank took advantage of growing genome archives and studied 38 genes in the whole gene sequences of 53 species of extant bacteria, including Cyanobacteria. By mapping out the rates of change in the slowest-changing genes, Blank was able to generate a bacterial evolutionary history that shows cyanobacteria branching off last.



If correct, Blank’s tree essentially flip-flops the traditional order in which bacteria appeared on the scene.

Traditionally, it has been thought that Cyanobacteria came on stage very early in Earth’s history, perhaps at least 3.5 billion years ago. They produced the first abundant oxygen molecules. All that oxygen bound to the abundant free iron in the oceans and rained to the seafloor – creating the economically important banded iron formations. The advent of atmospheric oxygen also caused sulfide minerals on land to break down into sulfates and wash into the oceans – where sulfur-loving bacteria gobbled them up. The earliest geological evidence for sulfur bacteria is changes in sulfur isotopes – indicating organisms are preferentially using isotopes of the element – that began about 2.4 billion years ago. This was followed by a sudden rise in oxygen in the atmosphere at about 2.2 or 2.3 billion years ago.

"The (traditional) model was that the cyanobacteria were present all the time," says Blank. Reasonable as all this sounds, it doesn’t match the genetic evolutionary tree, she says.

In Blank’s version of the story, the sulfur-loving bacteria came on the scene at about 2.4 billion years ago, and the Cyanobacteria came along at least 100 million years later, she says. Because banded iron formations were formed much earlier than these dates, Cyanobacteria are not likely to have led to their creation, she explains.

Blank’s model could explain the puzzling lack of actual cyanobacteria fossils in the earliest days of the banded iron formations. It could also resolve an apparent contradiction regarding the biochemistry of Cyanobacteria, says Blank. The contradiction is that cyanobacteria have a surprisingly advanced biochemistry that was the product of a long evolutionary history. In other words, cyanobacteria must have evolved from more primitive photosynthetic bacteria.

If Blank is correct, her revised evolutionary history of the bacteria raises a difficult question: If cyanobacteria came later, where did the Earth’s earliest oxidants come from which produced banded iron formations? There are many competing theories on this matter, Blank says. Among them are hypotheses that call on inorganic reactions in the oceans and the air to release limited amounts of oxidants. There is even the possibility that there was also an early and so-far undiscovered iron oxidizing microbe that may have produced banded iron formations as a result of their metabolism, Blank says.

Blank’s cyanobacteria research was conducted as part of her recent doctoral thesis at the University of California at Berkeley. Her bacterial phylogeny research is currently under review for publication in the journal Molecular Phylogenetics and Evolution. Blank is an Assistant Professor of Molecular Geobiology in the Department of Earth and Planetary Sciences at Washington University in St. Louis.


CONTACT INFORMATION

During the GSA Annual Meeting, Oct. 27-30, contact Christa Stratton at the GSA Newsroom in the Colorado Convention Center, Denver, Colorado, for assistance and to arrange for interviews: 303-228-8565.

The abstract for this presentation is available at: http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_46069.htm

Post-meeting contact information:

Carrine Blank
Earth and Planetary Sciences
Washington University
blank@levee.wustl.edu
314-935-4456

Ann Cairns
Director of Communications
Geological Society of America
acairns@geosociety.org
303-357-1056


Ann Cairns | EurekAlert!
Further information:
http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_46069.htm

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>