Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution upset: Oxygen-making microbes came last, not first

25.10.2002


Get ready to rewrite those biology textbooks – again. Although the "lowly" blue-green algae, or Cyanobacteria, have long been credited as one of Earth’s earliest life forms and the source of the oxygen in the early Earth’s atmosphere, they might be neither.

By creating a new genetic family tree of the world’s most primitive bacteria and comparing it to the geochemistry of ancient iron and sulfur deposits, Carrine Blank of Washington University has found evidence that instead of Cyanobacteria being very ancient, they may have appeared much later, perhaps as much as a billion years later, than previously assumed. Blank will present the results of her research at the annual meeting of the Geological Society of America in Denver on Tuesday, Oct. 29.

"What paleontologists and geologists have had to do is reconstruct evolutionary events because biologists haven’t had a very good evolutionary tree of bacteria," says Blank. To get a better family tree, Blank took advantage of growing genome archives and studied 38 genes in the whole gene sequences of 53 species of extant bacteria, including Cyanobacteria. By mapping out the rates of change in the slowest-changing genes, Blank was able to generate a bacterial evolutionary history that shows cyanobacteria branching off last.



If correct, Blank’s tree essentially flip-flops the traditional order in which bacteria appeared on the scene.

Traditionally, it has been thought that Cyanobacteria came on stage very early in Earth’s history, perhaps at least 3.5 billion years ago. They produced the first abundant oxygen molecules. All that oxygen bound to the abundant free iron in the oceans and rained to the seafloor – creating the economically important banded iron formations. The advent of atmospheric oxygen also caused sulfide minerals on land to break down into sulfates and wash into the oceans – where sulfur-loving bacteria gobbled them up. The earliest geological evidence for sulfur bacteria is changes in sulfur isotopes – indicating organisms are preferentially using isotopes of the element – that began about 2.4 billion years ago. This was followed by a sudden rise in oxygen in the atmosphere at about 2.2 or 2.3 billion years ago.

"The (traditional) model was that the cyanobacteria were present all the time," says Blank. Reasonable as all this sounds, it doesn’t match the genetic evolutionary tree, she says.

In Blank’s version of the story, the sulfur-loving bacteria came on the scene at about 2.4 billion years ago, and the Cyanobacteria came along at least 100 million years later, she says. Because banded iron formations were formed much earlier than these dates, Cyanobacteria are not likely to have led to their creation, she explains.

Blank’s model could explain the puzzling lack of actual cyanobacteria fossils in the earliest days of the banded iron formations. It could also resolve an apparent contradiction regarding the biochemistry of Cyanobacteria, says Blank. The contradiction is that cyanobacteria have a surprisingly advanced biochemistry that was the product of a long evolutionary history. In other words, cyanobacteria must have evolved from more primitive photosynthetic bacteria.

If Blank is correct, her revised evolutionary history of the bacteria raises a difficult question: If cyanobacteria came later, where did the Earth’s earliest oxidants come from which produced banded iron formations? There are many competing theories on this matter, Blank says. Among them are hypotheses that call on inorganic reactions in the oceans and the air to release limited amounts of oxidants. There is even the possibility that there was also an early and so-far undiscovered iron oxidizing microbe that may have produced banded iron formations as a result of their metabolism, Blank says.

Blank’s cyanobacteria research was conducted as part of her recent doctoral thesis at the University of California at Berkeley. Her bacterial phylogeny research is currently under review for publication in the journal Molecular Phylogenetics and Evolution. Blank is an Assistant Professor of Molecular Geobiology in the Department of Earth and Planetary Sciences at Washington University in St. Louis.


CONTACT INFORMATION

During the GSA Annual Meeting, Oct. 27-30, contact Christa Stratton at the GSA Newsroom in the Colorado Convention Center, Denver, Colorado, for assistance and to arrange for interviews: 303-228-8565.

The abstract for this presentation is available at: http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_46069.htm

Post-meeting contact information:

Carrine Blank
Earth and Planetary Sciences
Washington University
blank@levee.wustl.edu
314-935-4456

Ann Cairns
Director of Communications
Geological Society of America
acairns@geosociety.org
303-357-1056


Ann Cairns | EurekAlert!
Further information:
http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_46069.htm

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>