Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution upset: Oxygen-making microbes came last, not first

25.10.2002


Get ready to rewrite those biology textbooks – again. Although the "lowly" blue-green algae, or Cyanobacteria, have long been credited as one of Earth’s earliest life forms and the source of the oxygen in the early Earth’s atmosphere, they might be neither.

By creating a new genetic family tree of the world’s most primitive bacteria and comparing it to the geochemistry of ancient iron and sulfur deposits, Carrine Blank of Washington University has found evidence that instead of Cyanobacteria being very ancient, they may have appeared much later, perhaps as much as a billion years later, than previously assumed. Blank will present the results of her research at the annual meeting of the Geological Society of America in Denver on Tuesday, Oct. 29.

"What paleontologists and geologists have had to do is reconstruct evolutionary events because biologists haven’t had a very good evolutionary tree of bacteria," says Blank. To get a better family tree, Blank took advantage of growing genome archives and studied 38 genes in the whole gene sequences of 53 species of extant bacteria, including Cyanobacteria. By mapping out the rates of change in the slowest-changing genes, Blank was able to generate a bacterial evolutionary history that shows cyanobacteria branching off last.



If correct, Blank’s tree essentially flip-flops the traditional order in which bacteria appeared on the scene.

Traditionally, it has been thought that Cyanobacteria came on stage very early in Earth’s history, perhaps at least 3.5 billion years ago. They produced the first abundant oxygen molecules. All that oxygen bound to the abundant free iron in the oceans and rained to the seafloor – creating the economically important banded iron formations. The advent of atmospheric oxygen also caused sulfide minerals on land to break down into sulfates and wash into the oceans – where sulfur-loving bacteria gobbled them up. The earliest geological evidence for sulfur bacteria is changes in sulfur isotopes – indicating organisms are preferentially using isotopes of the element – that began about 2.4 billion years ago. This was followed by a sudden rise in oxygen in the atmosphere at about 2.2 or 2.3 billion years ago.

"The (traditional) model was that the cyanobacteria were present all the time," says Blank. Reasonable as all this sounds, it doesn’t match the genetic evolutionary tree, she says.

In Blank’s version of the story, the sulfur-loving bacteria came on the scene at about 2.4 billion years ago, and the Cyanobacteria came along at least 100 million years later, she says. Because banded iron formations were formed much earlier than these dates, Cyanobacteria are not likely to have led to their creation, she explains.

Blank’s model could explain the puzzling lack of actual cyanobacteria fossils in the earliest days of the banded iron formations. It could also resolve an apparent contradiction regarding the biochemistry of Cyanobacteria, says Blank. The contradiction is that cyanobacteria have a surprisingly advanced biochemistry that was the product of a long evolutionary history. In other words, cyanobacteria must have evolved from more primitive photosynthetic bacteria.

If Blank is correct, her revised evolutionary history of the bacteria raises a difficult question: If cyanobacteria came later, where did the Earth’s earliest oxidants come from which produced banded iron formations? There are many competing theories on this matter, Blank says. Among them are hypotheses that call on inorganic reactions in the oceans and the air to release limited amounts of oxidants. There is even the possibility that there was also an early and so-far undiscovered iron oxidizing microbe that may have produced banded iron formations as a result of their metabolism, Blank says.

Blank’s cyanobacteria research was conducted as part of her recent doctoral thesis at the University of California at Berkeley. Her bacterial phylogeny research is currently under review for publication in the journal Molecular Phylogenetics and Evolution. Blank is an Assistant Professor of Molecular Geobiology in the Department of Earth and Planetary Sciences at Washington University in St. Louis.


CONTACT INFORMATION

During the GSA Annual Meeting, Oct. 27-30, contact Christa Stratton at the GSA Newsroom in the Colorado Convention Center, Denver, Colorado, for assistance and to arrange for interviews: 303-228-8565.

The abstract for this presentation is available at: http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_46069.htm

Post-meeting contact information:

Carrine Blank
Earth and Planetary Sciences
Washington University
blank@levee.wustl.edu
314-935-4456

Ann Cairns
Director of Communications
Geological Society of America
acairns@geosociety.org
303-357-1056


Ann Cairns | EurekAlert!
Further information:
http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_46069.htm

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>