Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is being big clam on the block a factor in species success?

25.10.2002


Body size is one of the most important biological characteristics in the study of organisms, telling a researcher a lot about how a particular animal lives and interacts with it’s environment and with other species. Despite this importance, there has been little study of body size trends of ancient life.



Now, using marine life forms as models, three Virginia Tech doctoral students in geological sciences have launched a long-term research project to see what can be learned about life across millions of years. At the Geological Society of America’s 114th annual meeting in Denver, Oct. 27-30, Richard Krause Jr. will present early findings from his, Jennifer Stempien’s, and Susan Barbour Wood’s work.

So far, findings suggest that body size may not be directly related to evolutionary or ecological success.


The trio focused initially on bivalves and brachiopods. Bivalves, which include clams, mussels, and scallops, and brachiopods, which appear similar to clams but have a fundamentally different anatomy, are easily compared because "there is a really good fossil record for both groups," says Krause.

The scope of the project is huge. The researchers want to measure what has happened all over the world and over millions of years. "Obviously we can’t go out and collect fossils from each age and area," says Krause. So they are using photographs that accompany published research. This way they can look at and measure shells from many different time periods all over the world.

The research is already yielding some promising results. The students report that early in the history of life, size of the organisms from these groups was increasing along with diversity, which has not been previously documented. "Most interesting, as diversity begins to drop at the end of the Ordovician period, during a major extinction interval (440 million years ago), the overall size of the organisms of both groups was unchanged. The extinction itself wasn’t size selective," says Krause.

Another interesting point that Krause will focus on at the GSA meeting is the changing places of bivalves and brachiopods. "What we are finding is that from the early Ordovician to the Silurian, or between 500 million and 400 million years ago, bivalves were considerably bigger than brachiopods," says Krause. This is very similar to the present-day situation for these groups. Bivalves living in the oceans today are, on average, significantly larger than modern brachiopods.

But, while their size differences haven’t changed much, these groups have done a major switch ecologically over the last 400 million years. Brachiopods were very diverse and successful in the Ordovician and Silurian, while bivalves were somewhat rare in many environments. The situation is exactly reversed in modern oceans, says Krause.

"This seems to say that diversity and evolutionary success may not have anything to do with how big an organism is. In this case, the culprit is likely the fact that bivalves’ metabolism is higher. They are more active. That may be what is controlling size, rather than environment," says Krause. "The fact that this size difference seems to have not changed in the last 400 million years despite major ecological changes is really interesting, and a bit unexpected."

Krause will present the paper, "Differences in size of early Paleozoic bivalves and brachiopods: The influence of intrinsic and extrinsic factors on body size evolution," at 9:15 a.m. on Sunday, Oct. 27 in Room A108/110 at the Colorado Convention Center. Co-authors are Stempien, Virginia Tech geological sciences professor Michal Kowalewski, and Arnold I. Miller at the University of Cincinnati.


Contact information: Richard Krause. rkrause@vt.edu. 540-231-1840

Richard Krause’s major professor is Michal Kowalewski.

PR Contact: Susan Trulove, strulove@vt.edu, 540-231-5646.

Richard Krause | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>