Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brazilian shellfish may improve understanding of ancient world

25.10.2002


Brachiopods, the most common shellfish in Paleozoic times, now live primarily in the chilly waters of northern fjords and the Antarctic shelf, except for an abundant population in the tropic waters of the continental shelf off southeast Brazil.


Argyrotheca


Platidia



The Brazilian brachiopods are the best modern analogy for the life and times of the critter that was so pervasive over 250 million years ago, says David Rodland, Ph.D. student in geological sciences at Virginia Tech. He has been studying the population since July 2000.

Rodland is studying the encrustation, or colonization, of the modern brachiopods by oysters, bryozoans -- or "moss animals," and, in particular, worm tubes. There has been no large-scale study of modern brachiopod encrustation, he says. The study results might allow scientists to estimate such things as the water depth at which Paleozoic brachiopods lived and the productivity of plankton populations, of the earth’s waters at that time.


He will present his findings at the Geological Society of America’s 114th annual meeting in Denver October 27-30.

Rodland is looking at "every scale, from shell to shelf," he says. Factors affecting encrustation are water depth, nutrients in the water, and shell surface.

Some findings are that encrustation is highest in shallower water and in deep water where upwelling delivers nutrients." The brachiopods appear to be concentrated in nutrient rich water and the variations in the abundance of encrusters suggest a link to productivity," Rodland says.

Below 100 meters, encrustation drops to about 2 percent for all brachiopods combined, although it varies by species. About 9 percent of the grooved Argyrotheca are encrusted at depths of 100 to 500 meters, while fewer than 1 percent of the spiny Platidia are still colonized."Similar patterns are found on Paleozoic brachiopods," Rodland says. "Shell ornamentation affects colonization by encrusters. Grooves seem to encourage colonization, while spines discourage it."

However, looking at the variability in encrustation at a range of depths along the approximately 300 miles of the shelf, Rodland has determined that the amount of plankton in the water is more likely a driving factor than depth alone in whether or not worms and oysters set up housekeeping on the brachiopods. "Depth influences the amount of encrustation we see, but it’s clearly not depth alone. In one transect, encrustation decreases with depth but in another bay, encrustation is high regardless of depth," Rodland says.

He is also looking at the numbers and different kinds of organisms that colonize brachiopods. "I’m looking at the diversity of each shell as the function of the shell size," he says. His findings appear to parallel studies of islands. "The larger the island, the more species are present. On a shell, diversity increases logarithmically with valve area," he says.

Worms and bryozoans are some of the most common encrusters. "The fauna has changed since the Paleozoic, but the ecological principles are similar in terms of the pattern and frequency of encrustation," Rodland says. "A difference from Paleozoic times is that then most of the encrustation was on the outside of the shell. Now, there is more encrustation on the inside of the shell, after the death of the brachiopod. But it is still too early to say whether this is a major difference -- whether the colonizing organisms are looking for living or dead brachiopods. Modern outer-shelf brachiopods are mostly encrusted on the outside, probably because most of them were collected alive. That is another reason encrustation is less common in deeper water," he says.

The paper, "Colonists of a ’Lost World’: Quantitative analysis of brachiopod encrustation on the subtropical shelf of the southeast Brazilian bight," will be presented at 8:45 a.m. on Sunday, Oct. 27 in room A112 of the Colorado Convention Center. Co-authors are Michal Kowalewski, professor of geological sciences at Virginia Tech; Monica Carroll of the University of Georgia, and Marcello Simoes of the Universidade Estadual Paulista, Botucatu, Brazil.

Rodland, who grew up in Portland, Ore., received his undergraduate degree from Colorado College in 1996 and his master’s degree from the University of Southern California in 1999.


Contact Information: David L. Rodland, drodland@vt.edu, 540-231-8828

PR Contact: Susan Trulove, 540-231-5646, strulove@vt.edu

David Rodland’s major professor is Michal Kowalewski

David Rodland | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>