Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brazilian shellfish may improve understanding of ancient world

25.10.2002


Brachiopods, the most common shellfish in Paleozoic times, now live primarily in the chilly waters of northern fjords and the Antarctic shelf, except for an abundant population in the tropic waters of the continental shelf off southeast Brazil.


Argyrotheca


Platidia



The Brazilian brachiopods are the best modern analogy for the life and times of the critter that was so pervasive over 250 million years ago, says David Rodland, Ph.D. student in geological sciences at Virginia Tech. He has been studying the population since July 2000.

Rodland is studying the encrustation, or colonization, of the modern brachiopods by oysters, bryozoans -- or "moss animals," and, in particular, worm tubes. There has been no large-scale study of modern brachiopod encrustation, he says. The study results might allow scientists to estimate such things as the water depth at which Paleozoic brachiopods lived and the productivity of plankton populations, of the earth’s waters at that time.


He will present his findings at the Geological Society of America’s 114th annual meeting in Denver October 27-30.

Rodland is looking at "every scale, from shell to shelf," he says. Factors affecting encrustation are water depth, nutrients in the water, and shell surface.

Some findings are that encrustation is highest in shallower water and in deep water where upwelling delivers nutrients." The brachiopods appear to be concentrated in nutrient rich water and the variations in the abundance of encrusters suggest a link to productivity," Rodland says.

Below 100 meters, encrustation drops to about 2 percent for all brachiopods combined, although it varies by species. About 9 percent of the grooved Argyrotheca are encrusted at depths of 100 to 500 meters, while fewer than 1 percent of the spiny Platidia are still colonized."Similar patterns are found on Paleozoic brachiopods," Rodland says. "Shell ornamentation affects colonization by encrusters. Grooves seem to encourage colonization, while spines discourage it."

However, looking at the variability in encrustation at a range of depths along the approximately 300 miles of the shelf, Rodland has determined that the amount of plankton in the water is more likely a driving factor than depth alone in whether or not worms and oysters set up housekeeping on the brachiopods. "Depth influences the amount of encrustation we see, but it’s clearly not depth alone. In one transect, encrustation decreases with depth but in another bay, encrustation is high regardless of depth," Rodland says.

He is also looking at the numbers and different kinds of organisms that colonize brachiopods. "I’m looking at the diversity of each shell as the function of the shell size," he says. His findings appear to parallel studies of islands. "The larger the island, the more species are present. On a shell, diversity increases logarithmically with valve area," he says.

Worms and bryozoans are some of the most common encrusters. "The fauna has changed since the Paleozoic, but the ecological principles are similar in terms of the pattern and frequency of encrustation," Rodland says. "A difference from Paleozoic times is that then most of the encrustation was on the outside of the shell. Now, there is more encrustation on the inside of the shell, after the death of the brachiopod. But it is still too early to say whether this is a major difference -- whether the colonizing organisms are looking for living or dead brachiopods. Modern outer-shelf brachiopods are mostly encrusted on the outside, probably because most of them were collected alive. That is another reason encrustation is less common in deeper water," he says.

The paper, "Colonists of a ’Lost World’: Quantitative analysis of brachiopod encrustation on the subtropical shelf of the southeast Brazilian bight," will be presented at 8:45 a.m. on Sunday, Oct. 27 in room A112 of the Colorado Convention Center. Co-authors are Michal Kowalewski, professor of geological sciences at Virginia Tech; Monica Carroll of the University of Georgia, and Marcello Simoes of the Universidade Estadual Paulista, Botucatu, Brazil.

Rodland, who grew up in Portland, Ore., received his undergraduate degree from Colorado College in 1996 and his master’s degree from the University of Southern California in 1999.


Contact Information: David L. Rodland, drodland@vt.edu, 540-231-8828

PR Contact: Susan Trulove, 540-231-5646, strulove@vt.edu

David Rodland’s major professor is Michal Kowalewski

David Rodland | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>