Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brazilian shellfish may improve understanding of ancient world

25.10.2002


Brachiopods, the most common shellfish in Paleozoic times, now live primarily in the chilly waters of northern fjords and the Antarctic shelf, except for an abundant population in the tropic waters of the continental shelf off southeast Brazil.


Argyrotheca


Platidia



The Brazilian brachiopods are the best modern analogy for the life and times of the critter that was so pervasive over 250 million years ago, says David Rodland, Ph.D. student in geological sciences at Virginia Tech. He has been studying the population since July 2000.

Rodland is studying the encrustation, or colonization, of the modern brachiopods by oysters, bryozoans -- or "moss animals," and, in particular, worm tubes. There has been no large-scale study of modern brachiopod encrustation, he says. The study results might allow scientists to estimate such things as the water depth at which Paleozoic brachiopods lived and the productivity of plankton populations, of the earth’s waters at that time.


He will present his findings at the Geological Society of America’s 114th annual meeting in Denver October 27-30.

Rodland is looking at "every scale, from shell to shelf," he says. Factors affecting encrustation are water depth, nutrients in the water, and shell surface.

Some findings are that encrustation is highest in shallower water and in deep water where upwelling delivers nutrients." The brachiopods appear to be concentrated in nutrient rich water and the variations in the abundance of encrusters suggest a link to productivity," Rodland says.

Below 100 meters, encrustation drops to about 2 percent for all brachiopods combined, although it varies by species. About 9 percent of the grooved Argyrotheca are encrusted at depths of 100 to 500 meters, while fewer than 1 percent of the spiny Platidia are still colonized."Similar patterns are found on Paleozoic brachiopods," Rodland says. "Shell ornamentation affects colonization by encrusters. Grooves seem to encourage colonization, while spines discourage it."

However, looking at the variability in encrustation at a range of depths along the approximately 300 miles of the shelf, Rodland has determined that the amount of plankton in the water is more likely a driving factor than depth alone in whether or not worms and oysters set up housekeeping on the brachiopods. "Depth influences the amount of encrustation we see, but it’s clearly not depth alone. In one transect, encrustation decreases with depth but in another bay, encrustation is high regardless of depth," Rodland says.

He is also looking at the numbers and different kinds of organisms that colonize brachiopods. "I’m looking at the diversity of each shell as the function of the shell size," he says. His findings appear to parallel studies of islands. "The larger the island, the more species are present. On a shell, diversity increases logarithmically with valve area," he says.

Worms and bryozoans are some of the most common encrusters. "The fauna has changed since the Paleozoic, but the ecological principles are similar in terms of the pattern and frequency of encrustation," Rodland says. "A difference from Paleozoic times is that then most of the encrustation was on the outside of the shell. Now, there is more encrustation on the inside of the shell, after the death of the brachiopod. But it is still too early to say whether this is a major difference -- whether the colonizing organisms are looking for living or dead brachiopods. Modern outer-shelf brachiopods are mostly encrusted on the outside, probably because most of them were collected alive. That is another reason encrustation is less common in deeper water," he says.

The paper, "Colonists of a ’Lost World’: Quantitative analysis of brachiopod encrustation on the subtropical shelf of the southeast Brazilian bight," will be presented at 8:45 a.m. on Sunday, Oct. 27 in room A112 of the Colorado Convention Center. Co-authors are Michal Kowalewski, professor of geological sciences at Virginia Tech; Monica Carroll of the University of Georgia, and Marcello Simoes of the Universidade Estadual Paulista, Botucatu, Brazil.

Rodland, who grew up in Portland, Ore., received his undergraduate degree from Colorado College in 1996 and his master’s degree from the University of Southern California in 1999.


Contact Information: David L. Rodland, drodland@vt.edu, 540-231-8828

PR Contact: Susan Trulove, 540-231-5646, strulove@vt.edu

David Rodland’s major professor is Michal Kowalewski

David Rodland | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>