Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune synapses cannot function without ZAP-70

24.10.2002


Img.1: Schematic model of the immune synapse:
* an inner "ring of receptors and signaling molecules.
* an outer "ring" with adhesion molecules.


Communication within the immune system

A familial form of severe combined immune deficiency (SCID) is caused by anomalies of an enzyme called ZAP-70. If ZAP-70 is lacking or does not work, the T-cells, which play a key role in the mechanisms of immune defense, are no longer functional. Affected children therefore catch infections as soon as they are exposed to pathogenic microorganisms. The only treatment at present is bone marrow transplantation.

INSERM research scientists at the Institut Curie have recently described the essential role of ZAP-70 in the communication between immune cells, in the October 2002 issue of Immunity.



Considerable progress has been made in recent years in clarifying the subtleties of communication between cells of the immune system. Numerous signaling molecules have been identified and subtle mechanisms unraveled. A succession of studies since 1998 has shown that the interaction between cells of the immune system is highly organized through narrow junctions called synapses, like their counterparts between neurons. These fundamental advances in the study of cell communication are crucially important for better understanding and improved treatment of immune system dysfunction.

D4 cells no longer respond

Various characteristics observed in young patients suffering from this form of severe immune deficiency prompted Claire Hivroz and her group to study the role of ZAP-70 and its involvement in the mechanisms of signal transmission between cells of the immune system.

These young patients, for instance, have normal counts of CD4+ T-cells — immune cells that activate killer T-cells and antibody-producing B-cells – yet do not secrete antibodies in response to an infection.

In fact, CD4+ T-cells do not respond to stimulation by antigen-presenting cells (APCs) (see Img. 1). Normally, the interaction at the synapse between a T-cell and an APC leads to the activation of a series of enzymes, including ZAP-70, and culminates in the secretion of molecules that induce B-cells to synthesize antibodies.

Synapse organization involves a cascade of events

Scientists at the Institut Curie are investigating the highly disruptive consequences of the absence of ZAP-70 at the synapse. When ZAP-70 is normal, molecular “rings” are formed at the intercellular contact or immune synapse between two cells. One of these rings comprises receptors, co-receptors and signaling molecules, which ensure the connection between the signal received from outside the cell and the triggering of a program of switching on genes in the T-cell nucleus.

Another ring (outside the first) is composed principally of adhesion proteins and maintains the physical contact between the two cells (see Img 1).

At the same time, within the T-cell, the cytoskeleton orchestrates the movement of surface proteins at this cell junction.

The microtubules move and form “tracks” which guide intracellular vesicles containing signaling molecules to the synapse.

All these events, which lead to the formation of a functional synapse, unfold according to a precise scenario in time and space. There are, however, variations in the type of molecules recruited to the rings and in the way the cytoskeleton is organized depending on the cell pair involved: T-cell / B-cell; T-cell dendritic cell; B-cell / dendritic cell; killer T-cell / target cell, etc.

ZAP-70 is an indispensable link in signal transmission

Research scientists at the Institut Curie have chosen to take a B-cell as an antigen-presenting cell and to study its interaction with a T-cell. Using videomicroscopy, they have compared ZAP-70-expressing cells with cells in which ZAP-70 is either lacking or altered.

They have shown that ZAP-70 is essential for the correct unfolding of the events that occur within the T-cell. ZAP-70 participates in guiding the signaling molecules towards the immune synapse. The absence of ZAP-70 does not disrupt the general organization of the rings, that is the gathering of the membrane molecules and the positioning of surface molecules at the synapse. In contrast, intracellular events are highly dependent on its presence, and if ZAP-70 is absent the microtubule network does not orientate correctly and some signaling molecules do not accumulate in the synaptic zone.

Apart from a better understanding of the molecular basis of this immune deficiency, this work has more accurately identified the events occurring when immune cells touch and communicate. ZAP-70 is an indispensable link in the cascade of signals directed towards the nucleus, which culminate in activation of the T-cell.

Institut Curie researchers are now seeking to understand how ZAP-70 controls the reorientation of the microtubules towards the synapse and to analyze the role of the antigen-presenting cell in ring formation.

Reference

"In the immune synapse, ZAP-70 controls T-cell polarization and recruitment of signaling proteins but not formation of the synaptic pattern"

Nicolas Blanchard1, Vincenzo Di Bartolo2 and Claire Hivroz1
Immunity, vol. 17, 389-399, October 2002

1Inserm U520, Institut Curie
2Unité d’Imunologie moléculaire, Institut Pasteur


Press contacts
Institut Curie
Press Relations
Catherine Goupillon
Phone 01 44 32 40 63
service.presse@curie.fr

Iconography
Cécile Charré
Phone 01 44 32 40 51
Fax 01 44 32 41 67

Inserm Press Center
Nathalie Christophe
Phone 01 44 23 60 85
presse@tolbiac.inserm.fr
Séverine Ciancia
Phone 01 44 23 60 86

Catherine Goupillon | Institut Curie
Further information:
http://www.orpha.net

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>