Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Geneticists Study Origin, Evolution of "Sticky" Rice

23.10.2002


When tested in iodine, grains of non-glutinous rice turn black (left), while glutinous rice remains unstained.


A study by two North Carolina State University geneticists traces the origin and evolution of a genetic mutation that long ago led to the creation of a type of rice known as glutinous, or "sticky," rice.

The molecular genetic research leads researchers to believe that glutinous rice - which differs from non-glutinous, or common, rice on account of a mutation in its Waxy gene that suppresses the formation of a starch called amylose - most likely originated a single time in Southeast Asia. Further, DNA evidence - namely the lower-than-expected genetic variability in the Waxy gene - suggests that early domesticators of glutinous rice liked its adhesive quality and wanted to preserve that particular trait.

Dr. Michael Purugganan, associate professor of genetics, and Dr. Kenneth Olsen, post-doctoral research associate in genetics, publish their findings in the Oct. 23 edition of Genetics.



To learn more about the origin and evolution of sticky rice, the researchers studied 105 glutinous and non-glutinous samples of rice donated from the multitudinous stock kept by the International Rice Research Institute in Los Banos, Philippines.

Rice contains two starches: amylose and amylopectin. Glutinous rice lacks amylose; in fact, it is the lack of amylose that gives it its sticky composition. Non-glutinous rice - what you’d find if you cooked up a name-brand package of rice from the grocery store, for example - contains up to 30 percent amylose; the result is rice with grains that separate.

Glutinous rice is the staple food in some areas in Southeast Asia, including parts of Laos, Thailand and Cambodia, the researchers say. Sticky rice has also migrated north to become an important part of the diet in places like China and Japan. Used primarily in a number of desserts - rice cakes, for example - sticky rice has achieved important cultural standing in East and Southeast Asia.

But Asian folklore diverges on the origin of glutinous rice, Purugganan says. He found both a Laotian Buddhist legend charting the existence of glutinous rice to about 1,100 years ago and Chinese folklore that indicated the existence of glutinous rice more than 2,000 years ago.

"Since no one really knows where glutinous rice came from, we wanted to find its origin using molecular means," Purugganan says. "We also wanted to find out the number of times the mutation in the Waxy gene that suppresses amylose, which produces glutinous rice, arose during rice domestication. And, we wanted to see if the Waxy gene showed evidence of selection by early Asian farmers."

Performing genetic sequencing of these samples at NC State’s Genome Research Laboratory, Purugganan and Olsen assembled a "gene tree," or network that represents patterns of genetic differences among the DNA sequences, Olsen explains.

Using the gene tree, the researchers found that sticky rice’s genetic mutation maps to a single mutation on the gene tree, suggesting that the mutation occurred a single time rather than more than once, Olsen says. Looking at the geographic locations of the rice DNA sequences that are direct ancestors of the mutation, the researchers found fairly strong evidence that Southeast Asia was the geographic origin of sticky rice. This squares with the fact that sticky rice is a staple in some parts of Southeast Asia.

"This type of research really opens up the window of not only how crops originate, but also how specific features evolve," Purugganan says. Olsen adds, "This is one of the first times that anyone has looked within a crop species at the evolutionary and geographical origins of important domestication traits in crops."

Purugganan and Olsen now plan to study other genes involved in starch synthesis in rice.

Research funding for the study of the origin and evolution of glutinous rice was provided
by the Alfred P. Sloan Foundation.

Dr. Michael Purugganan | North Carolina State University

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>