Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Geneticists Study Origin, Evolution of "Sticky" Rice

23.10.2002


When tested in iodine, grains of non-glutinous rice turn black (left), while glutinous rice remains unstained.


A study by two North Carolina State University geneticists traces the origin and evolution of a genetic mutation that long ago led to the creation of a type of rice known as glutinous, or "sticky," rice.

The molecular genetic research leads researchers to believe that glutinous rice - which differs from non-glutinous, or common, rice on account of a mutation in its Waxy gene that suppresses the formation of a starch called amylose - most likely originated a single time in Southeast Asia. Further, DNA evidence - namely the lower-than-expected genetic variability in the Waxy gene - suggests that early domesticators of glutinous rice liked its adhesive quality and wanted to preserve that particular trait.

Dr. Michael Purugganan, associate professor of genetics, and Dr. Kenneth Olsen, post-doctoral research associate in genetics, publish their findings in the Oct. 23 edition of Genetics.



To learn more about the origin and evolution of sticky rice, the researchers studied 105 glutinous and non-glutinous samples of rice donated from the multitudinous stock kept by the International Rice Research Institute in Los Banos, Philippines.

Rice contains two starches: amylose and amylopectin. Glutinous rice lacks amylose; in fact, it is the lack of amylose that gives it its sticky composition. Non-glutinous rice - what you’d find if you cooked up a name-brand package of rice from the grocery store, for example - contains up to 30 percent amylose; the result is rice with grains that separate.

Glutinous rice is the staple food in some areas in Southeast Asia, including parts of Laos, Thailand and Cambodia, the researchers say. Sticky rice has also migrated north to become an important part of the diet in places like China and Japan. Used primarily in a number of desserts - rice cakes, for example - sticky rice has achieved important cultural standing in East and Southeast Asia.

But Asian folklore diverges on the origin of glutinous rice, Purugganan says. He found both a Laotian Buddhist legend charting the existence of glutinous rice to about 1,100 years ago and Chinese folklore that indicated the existence of glutinous rice more than 2,000 years ago.

"Since no one really knows where glutinous rice came from, we wanted to find its origin using molecular means," Purugganan says. "We also wanted to find out the number of times the mutation in the Waxy gene that suppresses amylose, which produces glutinous rice, arose during rice domestication. And, we wanted to see if the Waxy gene showed evidence of selection by early Asian farmers."

Performing genetic sequencing of these samples at NC State’s Genome Research Laboratory, Purugganan and Olsen assembled a "gene tree," or network that represents patterns of genetic differences among the DNA sequences, Olsen explains.

Using the gene tree, the researchers found that sticky rice’s genetic mutation maps to a single mutation on the gene tree, suggesting that the mutation occurred a single time rather than more than once, Olsen says. Looking at the geographic locations of the rice DNA sequences that are direct ancestors of the mutation, the researchers found fairly strong evidence that Southeast Asia was the geographic origin of sticky rice. This squares with the fact that sticky rice is a staple in some parts of Southeast Asia.

"This type of research really opens up the window of not only how crops originate, but also how specific features evolve," Purugganan says. Olsen adds, "This is one of the first times that anyone has looked within a crop species at the evolutionary and geographical origins of important domestication traits in crops."

Purugganan and Olsen now plan to study other genes involved in starch synthesis in rice.

Research funding for the study of the origin and evolution of glutinous rice was provided
by the Alfred P. Sloan Foundation.

Dr. Michael Purugganan | North Carolina State University

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>