Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Geneticists Study Origin, Evolution of "Sticky" Rice

23.10.2002


When tested in iodine, grains of non-glutinous rice turn black (left), while glutinous rice remains unstained.


A study by two North Carolina State University geneticists traces the origin and evolution of a genetic mutation that long ago led to the creation of a type of rice known as glutinous, or "sticky," rice.

The molecular genetic research leads researchers to believe that glutinous rice - which differs from non-glutinous, or common, rice on account of a mutation in its Waxy gene that suppresses the formation of a starch called amylose - most likely originated a single time in Southeast Asia. Further, DNA evidence - namely the lower-than-expected genetic variability in the Waxy gene - suggests that early domesticators of glutinous rice liked its adhesive quality and wanted to preserve that particular trait.

Dr. Michael Purugganan, associate professor of genetics, and Dr. Kenneth Olsen, post-doctoral research associate in genetics, publish their findings in the Oct. 23 edition of Genetics.



To learn more about the origin and evolution of sticky rice, the researchers studied 105 glutinous and non-glutinous samples of rice donated from the multitudinous stock kept by the International Rice Research Institute in Los Banos, Philippines.

Rice contains two starches: amylose and amylopectin. Glutinous rice lacks amylose; in fact, it is the lack of amylose that gives it its sticky composition. Non-glutinous rice - what you’d find if you cooked up a name-brand package of rice from the grocery store, for example - contains up to 30 percent amylose; the result is rice with grains that separate.

Glutinous rice is the staple food in some areas in Southeast Asia, including parts of Laos, Thailand and Cambodia, the researchers say. Sticky rice has also migrated north to become an important part of the diet in places like China and Japan. Used primarily in a number of desserts - rice cakes, for example - sticky rice has achieved important cultural standing in East and Southeast Asia.

But Asian folklore diverges on the origin of glutinous rice, Purugganan says. He found both a Laotian Buddhist legend charting the existence of glutinous rice to about 1,100 years ago and Chinese folklore that indicated the existence of glutinous rice more than 2,000 years ago.

"Since no one really knows where glutinous rice came from, we wanted to find its origin using molecular means," Purugganan says. "We also wanted to find out the number of times the mutation in the Waxy gene that suppresses amylose, which produces glutinous rice, arose during rice domestication. And, we wanted to see if the Waxy gene showed evidence of selection by early Asian farmers."

Performing genetic sequencing of these samples at NC State’s Genome Research Laboratory, Purugganan and Olsen assembled a "gene tree," or network that represents patterns of genetic differences among the DNA sequences, Olsen explains.

Using the gene tree, the researchers found that sticky rice’s genetic mutation maps to a single mutation on the gene tree, suggesting that the mutation occurred a single time rather than more than once, Olsen says. Looking at the geographic locations of the rice DNA sequences that are direct ancestors of the mutation, the researchers found fairly strong evidence that Southeast Asia was the geographic origin of sticky rice. This squares with the fact that sticky rice is a staple in some parts of Southeast Asia.

"This type of research really opens up the window of not only how crops originate, but also how specific features evolve," Purugganan says. Olsen adds, "This is one of the first times that anyone has looked within a crop species at the evolutionary and geographical origins of important domestication traits in crops."

Purugganan and Olsen now plan to study other genes involved in starch synthesis in rice.

Research funding for the study of the origin and evolution of glutinous rice was provided
by the Alfred P. Sloan Foundation.

Dr. Michael Purugganan | North Carolina State University

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>