Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC chemists identify compound that inhibits cell migration

23.10.2002


A high-throughput assay developed by University of Illinois at Chicago chemists has led to discovery of a small organic compound that shows the unusual ability to inhibit cell migration. The new compound, identified as UIC-1005, may play a role in developing new kinds of cancer drugs.



The findings are published in the November issue of the journal ChemBioChem.

"We’ve been looking for chemical compounds that slow the process of cell migration," said Gabriel Fenteany, assistant professor of chemistry and the study’s principal author. "The process is poorly understood and has a lot of therapeutic potential."


Fenteany is also part of the UIC Cancer Center.

Fenteany and his co-workers grow skin-like epithelial cell sheets on tissue culture plates with many small depressions, or wells, each of which contains a culture of cells and a different chemical compound, providing the basis for the assay.

"We grow these cells and make little scratches in the resulting sheet of cells," Fenteany said. "A little gap forms, and cells move in to close that gap, similar to part of the wound healing process when you cut yourself.

"The process is also related to how a cancer cell will start to move to form a metastasis, and to how a tumor will recruit new blood vessels, which helps it grow," Fenteany said. "The phenomenon of cell shape change and movement is universal, even though details differ on how these cells move in different situations."

The assay developed by the UIC chemists makes the process to find molecules that inhibit cell movement quick and easy.

"We can easily screen a thousand compounds a day, or more," Fenteany said, adding, "We’re one of the few labs doing these sorts of screens. Therefore, there’s not really a good sense of what sorts of compounds will inhibit the process. That’s what we’re looking at."

Fenteany and his colleagues began their search using the high-throughput assay in December 2000 and discovered UIC-1005 a few months later. The new compound is from a class of molecules called oxazolidinones, which in recent years have been used successfully to develop new antibiotics that kill bacteria now resistant to older drugs. UIC-1005, however, shows no anti-bacterial properties and acts differently.

Fenteany hopes other labs adopt this high-throughput assay to hasten the discovery of additional molecules that inhibit cell migration. That search continues at UIC, along with work to modify the compound UIC-1005.

"Once you find the active structure, you can modify that structure to improve its activity, find out what it binds in the cell, and how," Fenteany said. "We’re working to find the protein it binds, and we have a candidate. Since the small molecule targets the protein and inhibits the process of cell movement, the protein becomes a potential target for drug development to block the pathway during disease."

Fenteany predicts drugs that inhibit cell migration may prove effective in combination therapies against cancer.

"A person who has had a tumor removed through surgery still faces the problem that some cancer cells escaped. By taking a cocktail of drugs, including anti-migratory compounds like UIC-1005 and other compounds we’ve yet to discover, the cancer could be more effectively contained. So even if not every cancer cell was removed by surgery or controlled in traditional chemotherapy, you’ve limited the ability of cells to move and spread and start new tumors."


Other authors are Arun Ghosh, professor of chemistry, and researchers Kevin McHenry and Sudha Ankala, all of UIC.

Funding for this research was by grants from UIC and the National Cancer Institute. Ongoing research is supported by a new grant from the American Cancer Society

Paul Francuch | EurekAlert!

More articles from Life Sciences:

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>