Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC chemists identify compound that inhibits cell migration

23.10.2002


A high-throughput assay developed by University of Illinois at Chicago chemists has led to discovery of a small organic compound that shows the unusual ability to inhibit cell migration. The new compound, identified as UIC-1005, may play a role in developing new kinds of cancer drugs.



The findings are published in the November issue of the journal ChemBioChem.

"We’ve been looking for chemical compounds that slow the process of cell migration," said Gabriel Fenteany, assistant professor of chemistry and the study’s principal author. "The process is poorly understood and has a lot of therapeutic potential."


Fenteany is also part of the UIC Cancer Center.

Fenteany and his co-workers grow skin-like epithelial cell sheets on tissue culture plates with many small depressions, or wells, each of which contains a culture of cells and a different chemical compound, providing the basis for the assay.

"We grow these cells and make little scratches in the resulting sheet of cells," Fenteany said. "A little gap forms, and cells move in to close that gap, similar to part of the wound healing process when you cut yourself.

"The process is also related to how a cancer cell will start to move to form a metastasis, and to how a tumor will recruit new blood vessels, which helps it grow," Fenteany said. "The phenomenon of cell shape change and movement is universal, even though details differ on how these cells move in different situations."

The assay developed by the UIC chemists makes the process to find molecules that inhibit cell movement quick and easy.

"We can easily screen a thousand compounds a day, or more," Fenteany said, adding, "We’re one of the few labs doing these sorts of screens. Therefore, there’s not really a good sense of what sorts of compounds will inhibit the process. That’s what we’re looking at."

Fenteany and his colleagues began their search using the high-throughput assay in December 2000 and discovered UIC-1005 a few months later. The new compound is from a class of molecules called oxazolidinones, which in recent years have been used successfully to develop new antibiotics that kill bacteria now resistant to older drugs. UIC-1005, however, shows no anti-bacterial properties and acts differently.

Fenteany hopes other labs adopt this high-throughput assay to hasten the discovery of additional molecules that inhibit cell migration. That search continues at UIC, along with work to modify the compound UIC-1005.

"Once you find the active structure, you can modify that structure to improve its activity, find out what it binds in the cell, and how," Fenteany said. "We’re working to find the protein it binds, and we have a candidate. Since the small molecule targets the protein and inhibits the process of cell movement, the protein becomes a potential target for drug development to block the pathway during disease."

Fenteany predicts drugs that inhibit cell migration may prove effective in combination therapies against cancer.

"A person who has had a tumor removed through surgery still faces the problem that some cancer cells escaped. By taking a cocktail of drugs, including anti-migratory compounds like UIC-1005 and other compounds we’ve yet to discover, the cancer could be more effectively contained. So even if not every cancer cell was removed by surgery or controlled in traditional chemotherapy, you’ve limited the ability of cells to move and spread and start new tumors."


Other authors are Arun Ghosh, professor of chemistry, and researchers Kevin McHenry and Sudha Ankala, all of UIC.

Funding for this research was by grants from UIC and the National Cancer Institute. Ongoing research is supported by a new grant from the American Cancer Society

Paul Francuch | EurekAlert!

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>