Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC chemists identify compound that inhibits cell migration

23.10.2002


A high-throughput assay developed by University of Illinois at Chicago chemists has led to discovery of a small organic compound that shows the unusual ability to inhibit cell migration. The new compound, identified as UIC-1005, may play a role in developing new kinds of cancer drugs.



The findings are published in the November issue of the journal ChemBioChem.

"We’ve been looking for chemical compounds that slow the process of cell migration," said Gabriel Fenteany, assistant professor of chemistry and the study’s principal author. "The process is poorly understood and has a lot of therapeutic potential."


Fenteany is also part of the UIC Cancer Center.

Fenteany and his co-workers grow skin-like epithelial cell sheets on tissue culture plates with many small depressions, or wells, each of which contains a culture of cells and a different chemical compound, providing the basis for the assay.

"We grow these cells and make little scratches in the resulting sheet of cells," Fenteany said. "A little gap forms, and cells move in to close that gap, similar to part of the wound healing process when you cut yourself.

"The process is also related to how a cancer cell will start to move to form a metastasis, and to how a tumor will recruit new blood vessels, which helps it grow," Fenteany said. "The phenomenon of cell shape change and movement is universal, even though details differ on how these cells move in different situations."

The assay developed by the UIC chemists makes the process to find molecules that inhibit cell movement quick and easy.

"We can easily screen a thousand compounds a day, or more," Fenteany said, adding, "We’re one of the few labs doing these sorts of screens. Therefore, there’s not really a good sense of what sorts of compounds will inhibit the process. That’s what we’re looking at."

Fenteany and his colleagues began their search using the high-throughput assay in December 2000 and discovered UIC-1005 a few months later. The new compound is from a class of molecules called oxazolidinones, which in recent years have been used successfully to develop new antibiotics that kill bacteria now resistant to older drugs. UIC-1005, however, shows no anti-bacterial properties and acts differently.

Fenteany hopes other labs adopt this high-throughput assay to hasten the discovery of additional molecules that inhibit cell migration. That search continues at UIC, along with work to modify the compound UIC-1005.

"Once you find the active structure, you can modify that structure to improve its activity, find out what it binds in the cell, and how," Fenteany said. "We’re working to find the protein it binds, and we have a candidate. Since the small molecule targets the protein and inhibits the process of cell movement, the protein becomes a potential target for drug development to block the pathway during disease."

Fenteany predicts drugs that inhibit cell migration may prove effective in combination therapies against cancer.

"A person who has had a tumor removed through surgery still faces the problem that some cancer cells escaped. By taking a cocktail of drugs, including anti-migratory compounds like UIC-1005 and other compounds we’ve yet to discover, the cancer could be more effectively contained. So even if not every cancer cell was removed by surgery or controlled in traditional chemotherapy, you’ve limited the ability of cells to move and spread and start new tumors."


Other authors are Arun Ghosh, professor of chemistry, and researchers Kevin McHenry and Sudha Ankala, all of UIC.

Funding for this research was by grants from UIC and the National Cancer Institute. Ongoing research is supported by a new grant from the American Cancer Society

Paul Francuch | EurekAlert!

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>