Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Determine How "Hospital Staph" Resists Antibiotics

22.10.2002


Structural studies of a key enzyme have revealed how dangerous strains of the bacterium, Staphylococcus aureus, become resistant to antibiotics.



Resistant strains of Staphylococcus aureus, which are also called "hospital staph" because of their prevalence in hospitals, constitute 34 percent of the clinical isolates in the United States, more than 60 percent in Japan, Singapore and Taiwan, and more than 50 percent in Italy and Portugal. And the emergence of strains of Staphylococcus that are resistant to vancomycin — the antibiotic of last resort — makes public health concerns about drug- resistant strains of the bacterium even more urgent.

In an article published online on October 21, 2002, in the journal Nature Structural Biology, Daniel Lim and Natalie Strynadka, who is a Howard Hughes Medical Institute international research scholar, reported structural studies of the enzyme known as penicillin-binding protein 2A (PBP2a). Lim and Strynadka are at the University of British Columbia.


Before the advent of drug-resistant strains of Staphylococcus aureus, staph infections were treated using beta-lactam antibiotics such as methicillin, which block the bacterial enzyme PBP. This enzyme — called a transpeptidase — normally catalyzes the cross-linking of structural molecules in the bacterial cell wall. Blocking PBP with methicillin weakens the cell wall, which ultimately bursts, killing the bacterium.

However, a methicillin-resistant strain of the bacteria has evolved that has acquired the gene for a new version of PBP — PBP2a —from another bacterium. The challenge, as well as the opportunity, said Strynadka, is to understand why PBP2a is resistant to beta-lactam antibiotics.

"What is very attractive from a therapeutic point of view is that PBP2a constitutes a single target, in terms of developing new antibiotics that can overcome this resistance," she said.

To understand the detailed structure of PBP2a, Lim produced a version of the enzyme that lacked a segment that anchored it to the cell membrane, but which retained the enzyme’s catalytic activity. Eliminating the anchoring segment rendered the protein soluble, so that the researchers could crystallize the protein for use in x-ray crystallography studies. In x-ray crystallography, researchers direct an x-ray beam through crystals of a protein to deduce its structure by analyzing the pattern of diffraction that is produced. Analysis by Lim and Strynadka revealed critical differences between the structures of PBP2a and other beta-lactam antibiotic sensitive PBPs.

"By comparing the native enzyme with previously known structures of transpeptidases, we came to understand that PBP2a had evolved distortions of the active site that prevent an effective reaction with the antibiotic," said Strynadka. An enzyme’s active site is the pocket within which the enzyme carries out its catalytic reaction. In the case of PBP2a, this catalytic reaction drives the essential cross-linking of cell-wall proteins in the bacterium.

"Although beta-lactam-sensitive bacteria still have a number of these normal transpeptidases, they also have PBP2a, which because of its distorted active site doesn’t react easily with the antibiotic," said Strynadka. "Thus, PBP2a can produce sufficient cross-linking in the cell wall so that the bacterium survives."

The researchers’ studies showed that PBP2a is different from normal PBP’s throughout its structure, and not just at the active site. This suggests that the distorted active site is an integral part of the enzyme, said Strynadka. The good news is that the PBP2a active site structure has unique features which can be used to design new types of antibiotics that block its resistance activity.

"The active site of PBP2a is quite extended and relatively hydrophobic," said Strynadka. "The structures we observe now allow for the rational design of specific PBP2a inhibitors that are tailored to better fit these features of the PBP2a active site allowing better affinity and inactivation of the enzyme."

Jim Keeley | Howard Hughes Medical Institute

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>