Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Determine How "Hospital Staph" Resists Antibiotics

22.10.2002


Structural studies of a key enzyme have revealed how dangerous strains of the bacterium, Staphylococcus aureus, become resistant to antibiotics.



Resistant strains of Staphylococcus aureus, which are also called "hospital staph" because of their prevalence in hospitals, constitute 34 percent of the clinical isolates in the United States, more than 60 percent in Japan, Singapore and Taiwan, and more than 50 percent in Italy and Portugal. And the emergence of strains of Staphylococcus that are resistant to vancomycin — the antibiotic of last resort — makes public health concerns about drug- resistant strains of the bacterium even more urgent.

In an article published online on October 21, 2002, in the journal Nature Structural Biology, Daniel Lim and Natalie Strynadka, who is a Howard Hughes Medical Institute international research scholar, reported structural studies of the enzyme known as penicillin-binding protein 2A (PBP2a). Lim and Strynadka are at the University of British Columbia.


Before the advent of drug-resistant strains of Staphylococcus aureus, staph infections were treated using beta-lactam antibiotics such as methicillin, which block the bacterial enzyme PBP. This enzyme — called a transpeptidase — normally catalyzes the cross-linking of structural molecules in the bacterial cell wall. Blocking PBP with methicillin weakens the cell wall, which ultimately bursts, killing the bacterium.

However, a methicillin-resistant strain of the bacteria has evolved that has acquired the gene for a new version of PBP — PBP2a —from another bacterium. The challenge, as well as the opportunity, said Strynadka, is to understand why PBP2a is resistant to beta-lactam antibiotics.

"What is very attractive from a therapeutic point of view is that PBP2a constitutes a single target, in terms of developing new antibiotics that can overcome this resistance," she said.

To understand the detailed structure of PBP2a, Lim produced a version of the enzyme that lacked a segment that anchored it to the cell membrane, but which retained the enzyme’s catalytic activity. Eliminating the anchoring segment rendered the protein soluble, so that the researchers could crystallize the protein for use in x-ray crystallography studies. In x-ray crystallography, researchers direct an x-ray beam through crystals of a protein to deduce its structure by analyzing the pattern of diffraction that is produced. Analysis by Lim and Strynadka revealed critical differences between the structures of PBP2a and other beta-lactam antibiotic sensitive PBPs.

"By comparing the native enzyme with previously known structures of transpeptidases, we came to understand that PBP2a had evolved distortions of the active site that prevent an effective reaction with the antibiotic," said Strynadka. An enzyme’s active site is the pocket within which the enzyme carries out its catalytic reaction. In the case of PBP2a, this catalytic reaction drives the essential cross-linking of cell-wall proteins in the bacterium.

"Although beta-lactam-sensitive bacteria still have a number of these normal transpeptidases, they also have PBP2a, which because of its distorted active site doesn’t react easily with the antibiotic," said Strynadka. "Thus, PBP2a can produce sufficient cross-linking in the cell wall so that the bacterium survives."

The researchers’ studies showed that PBP2a is different from normal PBP’s throughout its structure, and not just at the active site. This suggests that the distorted active site is an integral part of the enzyme, said Strynadka. The good news is that the PBP2a active site structure has unique features which can be used to design new types of antibiotics that block its resistance activity.

"The active site of PBP2a is quite extended and relatively hydrophobic," said Strynadka. "The structures we observe now allow for the rational design of specific PBP2a inhibitors that are tailored to better fit these features of the PBP2a active site allowing better affinity and inactivation of the enzyme."

Jim Keeley | Howard Hughes Medical Institute

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>