Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Determine How "Hospital Staph" Resists Antibiotics

22.10.2002


Structural studies of a key enzyme have revealed how dangerous strains of the bacterium, Staphylococcus aureus, become resistant to antibiotics.



Resistant strains of Staphylococcus aureus, which are also called "hospital staph" because of their prevalence in hospitals, constitute 34 percent of the clinical isolates in the United States, more than 60 percent in Japan, Singapore and Taiwan, and more than 50 percent in Italy and Portugal. And the emergence of strains of Staphylococcus that are resistant to vancomycin — the antibiotic of last resort — makes public health concerns about drug- resistant strains of the bacterium even more urgent.

In an article published online on October 21, 2002, in the journal Nature Structural Biology, Daniel Lim and Natalie Strynadka, who is a Howard Hughes Medical Institute international research scholar, reported structural studies of the enzyme known as penicillin-binding protein 2A (PBP2a). Lim and Strynadka are at the University of British Columbia.


Before the advent of drug-resistant strains of Staphylococcus aureus, staph infections were treated using beta-lactam antibiotics such as methicillin, which block the bacterial enzyme PBP. This enzyme — called a transpeptidase — normally catalyzes the cross-linking of structural molecules in the bacterial cell wall. Blocking PBP with methicillin weakens the cell wall, which ultimately bursts, killing the bacterium.

However, a methicillin-resistant strain of the bacteria has evolved that has acquired the gene for a new version of PBP — PBP2a —from another bacterium. The challenge, as well as the opportunity, said Strynadka, is to understand why PBP2a is resistant to beta-lactam antibiotics.

"What is very attractive from a therapeutic point of view is that PBP2a constitutes a single target, in terms of developing new antibiotics that can overcome this resistance," she said.

To understand the detailed structure of PBP2a, Lim produced a version of the enzyme that lacked a segment that anchored it to the cell membrane, but which retained the enzyme’s catalytic activity. Eliminating the anchoring segment rendered the protein soluble, so that the researchers could crystallize the protein for use in x-ray crystallography studies. In x-ray crystallography, researchers direct an x-ray beam through crystals of a protein to deduce its structure by analyzing the pattern of diffraction that is produced. Analysis by Lim and Strynadka revealed critical differences between the structures of PBP2a and other beta-lactam antibiotic sensitive PBPs.

"By comparing the native enzyme with previously known structures of transpeptidases, we came to understand that PBP2a had evolved distortions of the active site that prevent an effective reaction with the antibiotic," said Strynadka. An enzyme’s active site is the pocket within which the enzyme carries out its catalytic reaction. In the case of PBP2a, this catalytic reaction drives the essential cross-linking of cell-wall proteins in the bacterium.

"Although beta-lactam-sensitive bacteria still have a number of these normal transpeptidases, they also have PBP2a, which because of its distorted active site doesn’t react easily with the antibiotic," said Strynadka. "Thus, PBP2a can produce sufficient cross-linking in the cell wall so that the bacterium survives."

The researchers’ studies showed that PBP2a is different from normal PBP’s throughout its structure, and not just at the active site. This suggests that the distorted active site is an integral part of the enzyme, said Strynadka. The good news is that the PBP2a active site structure has unique features which can be used to design new types of antibiotics that block its resistance activity.

"The active site of PBP2a is quite extended and relatively hydrophobic," said Strynadka. "The structures we observe now allow for the rational design of specific PBP2a inhibitors that are tailored to better fit these features of the PBP2a active site allowing better affinity and inactivation of the enzyme."

Jim Keeley | Howard Hughes Medical Institute

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>