Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Finding a ’Holy Grail’: simulated and experimental protein folding compares nicely


For years, the comparison of simulated and experimental protein folding kinetics has been a "Holy Grail" for biologists and chemists. But scientists seeking to confirm protein-folding theory with laboratory experiments have been unable to cross the microsecond barrier. This obstacle in time existed because experiments could not be performed fast enough, nor simulations run long enough, to permit a direct comparison.

Now, measurements from the University of Illinois at Urbana-Champaign and molecular dynamics simulations from Stanford University have at last been compared and found to be in very good agreement. A paper describing the work has been accepted for publication in the journal Nature, and was posted on its Web site

"By crossing the microsecond barrier, we can directly compare simulated and experimental protein folding dynamics, such as folding rates and equilibrium constants," said Martin Gruebele, an Illinois professor of chemistry, physics and biophysics.

To allow experiment and theory to meet on a microsecond time scale, the researchers designed a small protein based on the work of Barbara Imperiali and her colleagues, now at the Massachusetts Institute of Technology. Consisting of only 23 amino acids, the protein contains all three basic elements of secondary structure -- helices, beta sheets and loops -- but can fold simply and rapidly.

At Illinois, Gruebele and graduate student Houbi Nguyen measured folding times using a fast temperature jump experimental procedure. To initiate the folding and unfolding dynamics, the solution was heated rapidly by a single pulse from an infrared laser. As the proteins began twisting into their characteristic shapes, a series of pulses from an ultraviolet laser caused some of the amino acids to fluoresce, revealing to the researchers a time-sequence of folding and unfolding events from which the folding rate constant was obtained.

At Stanford, physical chemist Vijay Pande and graduate student Christopher Snow accumulated more than 700 microseconds of molecular dynamics simulations by dividing the work among more than 30,000 volunteer computers distributed around the world.

Inspired by previous distributed computing initiatives, such as SETI@Home -- an immensely popular program that searches radio telescope data for evidence of extraterrestrial transmissions -- Pande developed a similar screen saver, which he called Folding@Home. The program broke the number crunching into many thousands of tiny pieces, each covering only 5-20 nanoseconds of folding time, and ran them using spare time on the volunteer computers.

"The computational predictions were in extremely good agreement with our experimentally determined folding times and equilibrium constants," Gruebele said. "For example, our group came up with an average folding time of 7.5 microseconds, while PandeÕs group came up with 8.0 microseconds."

Moreover, while distributed computing initiatives like SETI@Home have offered the promise of novel scientific advances, Folding@HomeÕs success is both an important advance in understanding protein folding and it is the first time a distributed computing project has yielded a significant advance.

The simulations also demonstrated the heterogeneous nature of the folding event and the funnel-shaped appearance of the protein’s energy landscape.

"The protein can fall downhill to its native state through many different scenarios," Pande said. "In some of the simulations, the beta sheet formed first, in others the alpha helix formed first, and in still others the loop formed first. Because the protein can follow more than one pathway, a variety of folding times will result."

By comparing absolute quantities through experiment and simulation, the researchers can determine energy barriers and relative energies more accurately than before. The next step, they say, is to perform a similar comparison using a larger, more complex protein.

James E. Kloeppel | EurekAlert!

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>