Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding a ’Holy Grail’: simulated and experimental protein folding compares nicely

21.10.2002


For years, the comparison of simulated and experimental protein folding kinetics has been a "Holy Grail" for biologists and chemists. But scientists seeking to confirm protein-folding theory with laboratory experiments have been unable to cross the microsecond barrier. This obstacle in time existed because experiments could not be performed fast enough, nor simulations run long enough, to permit a direct comparison.



Now, measurements from the University of Illinois at Urbana-Champaign and molecular dynamics simulations from Stanford University have at last been compared and found to be in very good agreement. A paper describing the work has been accepted for publication in the journal Nature, and was posted on its Web site www.nature.com/nature.

"By crossing the microsecond barrier, we can directly compare simulated and experimental protein folding dynamics, such as folding rates and equilibrium constants," said Martin Gruebele, an Illinois professor of chemistry, physics and biophysics.


To allow experiment and theory to meet on a microsecond time scale, the researchers designed a small protein based on the work of Barbara Imperiali and her colleagues, now at the Massachusetts Institute of Technology. Consisting of only 23 amino acids, the protein contains all three basic elements of secondary structure -- helices, beta sheets and loops -- but can fold simply and rapidly.

At Illinois, Gruebele and graduate student Houbi Nguyen measured folding times using a fast temperature jump experimental procedure. To initiate the folding and unfolding dynamics, the solution was heated rapidly by a single pulse from an infrared laser. As the proteins began twisting into their characteristic shapes, a series of pulses from an ultraviolet laser caused some of the amino acids to fluoresce, revealing to the researchers a time-sequence of folding and unfolding events from which the folding rate constant was obtained.

At Stanford, physical chemist Vijay Pande and graduate student Christopher Snow accumulated more than 700 microseconds of molecular dynamics simulations by dividing the work among more than 30,000 volunteer computers distributed around the world.

Inspired by previous distributed computing initiatives, such as SETI@Home -- an immensely popular program that searches radio telescope data for evidence of extraterrestrial transmissions -- Pande developed a similar screen saver, which he called Folding@Home. The program broke the number crunching into many thousands of tiny pieces, each covering only 5-20 nanoseconds of folding time, and ran them using spare time on the volunteer computers.

"The computational predictions were in extremely good agreement with our experimentally determined folding times and equilibrium constants," Gruebele said. "For example, our group came up with an average folding time of 7.5 microseconds, while PandeÕs group came up with 8.0 microseconds."

Moreover, while distributed computing initiatives like SETI@Home have offered the promise of novel scientific advances, Folding@HomeÕs success is both an important advance in understanding protein folding and it is the first time a distributed computing project has yielded a significant advance.

The simulations also demonstrated the heterogeneous nature of the folding event and the funnel-shaped appearance of the protein’s energy landscape.

"The protein can fall downhill to its native state through many different scenarios," Pande said. "In some of the simulations, the beta sheet formed first, in others the alpha helix formed first, and in still others the loop formed first. Because the protein can follow more than one pathway, a variety of folding times will result."

By comparing absolute quantities through experiment and simulation, the researchers can determine energy barriers and relative energies more accurately than before. The next step, they say, is to perform a similar comparison using a larger, more complex protein.

James E. Kloeppel | EurekAlert!

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>