Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding a ’Holy Grail’: simulated and experimental protein folding compares nicely

21.10.2002


For years, the comparison of simulated and experimental protein folding kinetics has been a "Holy Grail" for biologists and chemists. But scientists seeking to confirm protein-folding theory with laboratory experiments have been unable to cross the microsecond barrier. This obstacle in time existed because experiments could not be performed fast enough, nor simulations run long enough, to permit a direct comparison.



Now, measurements from the University of Illinois at Urbana-Champaign and molecular dynamics simulations from Stanford University have at last been compared and found to be in very good agreement. A paper describing the work has been accepted for publication in the journal Nature, and was posted on its Web site www.nature.com/nature.

"By crossing the microsecond barrier, we can directly compare simulated and experimental protein folding dynamics, such as folding rates and equilibrium constants," said Martin Gruebele, an Illinois professor of chemistry, physics and biophysics.


To allow experiment and theory to meet on a microsecond time scale, the researchers designed a small protein based on the work of Barbara Imperiali and her colleagues, now at the Massachusetts Institute of Technology. Consisting of only 23 amino acids, the protein contains all three basic elements of secondary structure -- helices, beta sheets and loops -- but can fold simply and rapidly.

At Illinois, Gruebele and graduate student Houbi Nguyen measured folding times using a fast temperature jump experimental procedure. To initiate the folding and unfolding dynamics, the solution was heated rapidly by a single pulse from an infrared laser. As the proteins began twisting into their characteristic shapes, a series of pulses from an ultraviolet laser caused some of the amino acids to fluoresce, revealing to the researchers a time-sequence of folding and unfolding events from which the folding rate constant was obtained.

At Stanford, physical chemist Vijay Pande and graduate student Christopher Snow accumulated more than 700 microseconds of molecular dynamics simulations by dividing the work among more than 30,000 volunteer computers distributed around the world.

Inspired by previous distributed computing initiatives, such as SETI@Home -- an immensely popular program that searches radio telescope data for evidence of extraterrestrial transmissions -- Pande developed a similar screen saver, which he called Folding@Home. The program broke the number crunching into many thousands of tiny pieces, each covering only 5-20 nanoseconds of folding time, and ran them using spare time on the volunteer computers.

"The computational predictions were in extremely good agreement with our experimentally determined folding times and equilibrium constants," Gruebele said. "For example, our group came up with an average folding time of 7.5 microseconds, while PandeÕs group came up with 8.0 microseconds."

Moreover, while distributed computing initiatives like SETI@Home have offered the promise of novel scientific advances, Folding@HomeÕs success is both an important advance in understanding protein folding and it is the first time a distributed computing project has yielded a significant advance.

The simulations also demonstrated the heterogeneous nature of the folding event and the funnel-shaped appearance of the protein’s energy landscape.

"The protein can fall downhill to its native state through many different scenarios," Pande said. "In some of the simulations, the beta sheet formed first, in others the alpha helix formed first, and in still others the loop formed first. Because the protein can follow more than one pathway, a variety of folding times will result."

By comparing absolute quantities through experiment and simulation, the researchers can determine energy barriers and relative energies more accurately than before. The next step, they say, is to perform a similar comparison using a larger, more complex protein.

James E. Kloeppel | EurekAlert!

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>