Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The species that propagate slowly, become extinct sooner

18.10.2002


The animals and plants of our planet are becoming extinct under the pressure of civilization. The scientists have counted that one species vanishes from Earth every hour. The mammoth, passenger pigeon, gare-fowl, Steller`s sea cow - these are the most well-known of extinct species, but hundreds of species are next in turn. Can the scientists forecast what species is the first in this succession and what species is not under the threat of complete extinction? If the answer is known, the effort and funds intended for the preservation of natural resources could be distributed correctly. Leonard Polishchuk, Ph. D. (Biology), research assistant of the Chair of General Ecology, Faculty of Biology, Lomonosov Moscow State University, has found a mathematical index of animal vulnerability.



It is common knowledge that the species of large animals that propagate themselves slowly and produce scarce posterity extinct earlier than others. Therefore, Leonard Polishchuk was looking for the characteristic of extinction risk among common demographic and ecological parameters. The researcher analyzed several parameters for 90 species mammal inhabiting the territory of the former USSR: life interval, quantity of litter, body weight of a sexually mature female, annual prolificacy and the number of posterity that each specific animal species produces within the entire lifetime. Applying the logistic regression method, he compared the above parameters to the probability of these species` registration in the Red Book. The most appropriate characteristic has appeared to be natural annual prolificacy, i.e. the number of daughters born by a female within a year.

The leaders of this index have turned out to be the rodents: common shrew (11.4), rabbit (10.5), Pallas` pika and steppe mouse-hare (8.8 è 7.9), field mouse (7.7), Alpine hare and European hare (5.0 è 4.4) - these species are well-known for their vitality.
About one third of all investigated species is characterized by the index exceeding 2.9. Almost all the species registered in the Red Book are grouped closer to the end of the list - their production/mortality ratio is lower than the above value. The list is ended by the walrus (0.17), bison (0.20), and the sea-otter (0.25), which were on the verge of extinction in the 19th century.



This index coincides with the probability of species` extinction; on top of that, it has a distinct biological meaning and is mathematically valid. From the ecological point of view, this value is the measure of the species` capability for reproduction, the high rate of quantity restoration being a prerequisite to successful survival of animal in adverse conditions. Mathematically, the probability of the species` registration in the Red Book (L) is in the negative dependence on the annual prolificacy, this dependence is described by the equation: L=1 / [1 + exp.(-1.52 + 2.10 B)].

Another important outcome of Polishchuk`s research is that he has proved that the risk of extinction is proportional to the range of quantity fluctuation. It seems that it should be the other way round, if the species quantity goes down, the probability of complete extinction should go up. However, it has turned out differently, and the researcher`s explanation is as follows: "The point is that extensive quantity fluctuations are normally inherent to the species capable of quick reproduction. Consequently, these species have lower probability of becoming extinct and less chances of registration in the Red Book. Therefore, the rate of population increase influences both the quantity variability (in a positive way), and the probability of extinction (in a negative way). For example, hares and rabbits are the species famous for high rises and drastic falls of their quantity, but they have never been recorded in the Red Book, on the contrary, these species are flourishing. Everywhere, should the climate be suitable, the rabbits are the usual inhabitants of cities and the countryside, while the hares are the traditional target of hunting ".

The above research of the Russian scientist has caused an extensive feedback in Russia and around the world. So far, the conservancy practice has lacked an unbiased index of the necessity to take nature-conservative measures for a certain species, the animals and plants were recorded in the Red Books based on the specialists` expert judgements. Now the environment protection priorities can be computed. The most important result is that the funds can be distributed in proportion to the calculated coefficients. Let us consider the following example. According to the 2002-2010 Russian Federal Target Program, the right to priority financing was assigned to two Russian animals - the tiger (USD 16.7 million) and the polar bear (USD 13.7 million). All existing polar bear females give birth annually to 0.3 daughters in the average, and the tiger females - to 0.4. Evidently, with such reproduction level these two species are doomed to extinction, and the funding for nature-conservative measures have been allocated and distributed between them quite reasonably, i.e. almost equally. However, what can be done about the other twenty rare species which also have low reproduction capabilities, but the share of them all taken together makes about 20 times less funding? Will the Russian desman, wild ass and mountain sheep survive? Will the wild ass and goral be preserved? What about the Far-East leopards, the quantity of which counts about 20? The proposed concept is to help distribute reasonably the funds allocated for nature protection.

Elena Krasnova | Informnauka

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>