Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quick-change artist: tiny protein folds faster than any other

18.10.2002


The world speed record for protein folding apparently goes to an unusually tiny specimen that traces its origins to Gila monster spit.


University of Florida researchers have discovered that the Tryptophan cage protein, derived from the saliva of the Gila monster lizard, zooms to its folded state, above, in four millionths of a second - about four times faster than any protein previously measured. The finding adds to the emerging knowledge about how proteins fold, information that could lead to better drugs and cures for diseases tied to misshapen proteins, such as Alzheimer’s, Parkinson’s and Mad Cow diseases.



So reports a team of University of Florida researchers in a paper published this week in the online edition of the Journal of the American Chemical Society. Though significant mainly from a purely scientific standpoint, the finding eventually may be important in researchers’ understanding of the underlying causes behind a host of maladies.

Proteins acquire their three-dimensional, blob-like shapes when the amino acids they are composed of spontaneously fold into place. The process has become a hot topic in science in recent years because the shape of proteins is directly tied to their function in the cells of animals and people. Misshapen proteins, or proteins whose amino acids form an even slightly different configuration than normal proteins, have been connected to Alzheimer’s disease and a range of other serious disorders.


The UF team found the protein Tryptophan cage, or Trp-cage for short, rockets from its two-dimensional, line-like state of 20 amino acids to its three-dimensional state in four-millionths of a second. That’s the fastest rate yet observed for a complete protein - and about four times faster than any other protein yet measured, UF researchers say.

With about 10 atoms per amino acid, the protein is composed of about 200 atoms, and each atom must interact with every other atom before finding its proper place in the structure. That means at least 40,000 atomic interactions - pushing and pulling movements - occur in an almost imperceptible period, said Stephen Hagen, an assistant professor of physics and one of the paper’s four UF authors.

“The fact that some proteins can fold incredibly fast is really a remarkable thing,” he said. “What is it that’s special about these molecules that enables them to solve a very difficult computational problem spontaneously in such a short amount of time?”

Vijay Pande, an assistant professor of chemistry at Stanford University, called the UF finding “really important and very exciting.” He said it could speed up biologists’ efforts to simulate the protein-folding process, which could lead to better drugs and cures for diseases tied to misshapen proteins.

Scientists have long known that instructions in genes’ DNA determine the amino acid code for proteins. However, they still don’t know the structure of most human proteins or the role they play in many inherited traits or diseases. The way amino acids come together to form proteins is one area researchers are plumbing for answers.

Enter the Gila monster. Trp-cage stems from a protein another group of researchers removed from the lizard’s saliva in an effort to understand why its bite makes some people ill but not others, said Adrian Roitberg, a UF assistant professor of chemistry. The researchers modified the protein’s structure to make it more stable and easier to work with, and then published the results of their work online, where the UF scientists learned about them.

With other proteins composed of hundreds or thousands of amino acids, Trp-cage’s small size might seem to explain its fast-folding speed, but protein size and speed are not related, Hagen said. More interestingly, researchers expected Trp-cage would fold at least 1,000 times slower than it does, leaving its blinding speed “quite a mystery,” Hagen said.

There are two ways of probing how proteins attain their shape: experiments in the lab and computer simulations. UF researchers have done both with Trp-cage.

Hagen’s team, which included Roitberg and UF physics doctoral students Linlin Qiu and Suzette Pabit, used an advanced instrument called a laser temperature jump spectrometer to observe and time Trp-cage’s transition from its unfolded to its folded state. Roitberg also was part of a separate team collaborating with researchers from the State University of New York-Stonybrook that simulated Trp-cage’s structure on a computer based solely on its amino acid code. The results, reported last month in the Journal of the American Chemical Society, caused a stir in the scientific community because the simulated Trp-cage was extremely close in size and shape to that of the actual observed protein.

If such a computational method ever could be used to replicate larger, more-complex human proteins, it could speed the pace of research dramatically because the laboratory experimental approach is difficult, time consuming and expensive, Roitberg and Hagen said. For now, however, such a goal is far off, because computers are not yet powerful enough to quickly process all the information about each atom’s forces on all of the other atoms in larger proteins.

Roitberg’s team’s simulation of tiny Trp-cage required 16 computers and three weeks of computing time - another indication of the protein’s speedy folding rate. Although protein fragments have been observed to fold faster, the complete Trp-cage is one of a kind. “Here’s a molecule that is able to do in four microseconds what it takes these computers several weeks to do,” Hagen said.

Hagen said many diseases are tied to misshapen proteins. These include Alzheimer’s, Parkinson’s disease, Mad Cow Disease and others, Pande said. For biomedical researchers interested in genetic therapy to correct these proteins’ shapes, that naturally raises the question of how proteins mis-fold into botched versions. So while the news about Trp-cage’s folding pace has no immediate biomedical application, it contributes to increasing knowledge about this important process, Hagen said.

Stephen Hagen | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>