Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A quick-change artist: tiny protein folds faster than any other


The world speed record for protein folding apparently goes to an unusually tiny specimen that traces its origins to Gila monster spit.

University of Florida researchers have discovered that the Tryptophan cage protein, derived from the saliva of the Gila monster lizard, zooms to its folded state, above, in four millionths of a second - about four times faster than any protein previously measured. The finding adds to the emerging knowledge about how proteins fold, information that could lead to better drugs and cures for diseases tied to misshapen proteins, such as Alzheimer’s, Parkinson’s and Mad Cow diseases.

So reports a team of University of Florida researchers in a paper published this week in the online edition of the Journal of the American Chemical Society. Though significant mainly from a purely scientific standpoint, the finding eventually may be important in researchers’ understanding of the underlying causes behind a host of maladies.

Proteins acquire their three-dimensional, blob-like shapes when the amino acids they are composed of spontaneously fold into place. The process has become a hot topic in science in recent years because the shape of proteins is directly tied to their function in the cells of animals and people. Misshapen proteins, or proteins whose amino acids form an even slightly different configuration than normal proteins, have been connected to Alzheimer’s disease and a range of other serious disorders.

The UF team found the protein Tryptophan cage, or Trp-cage for short, rockets from its two-dimensional, line-like state of 20 amino acids to its three-dimensional state in four-millionths of a second. That’s the fastest rate yet observed for a complete protein - and about four times faster than any other protein yet measured, UF researchers say.

With about 10 atoms per amino acid, the protein is composed of about 200 atoms, and each atom must interact with every other atom before finding its proper place in the structure. That means at least 40,000 atomic interactions - pushing and pulling movements - occur in an almost imperceptible period, said Stephen Hagen, an assistant professor of physics and one of the paper’s four UF authors.

“The fact that some proteins can fold incredibly fast is really a remarkable thing,” he said. “What is it that’s special about these molecules that enables them to solve a very difficult computational problem spontaneously in such a short amount of time?”

Vijay Pande, an assistant professor of chemistry at Stanford University, called the UF finding “really important and very exciting.” He said it could speed up biologists’ efforts to simulate the protein-folding process, which could lead to better drugs and cures for diseases tied to misshapen proteins.

Scientists have long known that instructions in genes’ DNA determine the amino acid code for proteins. However, they still don’t know the structure of most human proteins or the role they play in many inherited traits or diseases. The way amino acids come together to form proteins is one area researchers are plumbing for answers.

Enter the Gila monster. Trp-cage stems from a protein another group of researchers removed from the lizard’s saliva in an effort to understand why its bite makes some people ill but not others, said Adrian Roitberg, a UF assistant professor of chemistry. The researchers modified the protein’s structure to make it more stable and easier to work with, and then published the results of their work online, where the UF scientists learned about them.

With other proteins composed of hundreds or thousands of amino acids, Trp-cage’s small size might seem to explain its fast-folding speed, but protein size and speed are not related, Hagen said. More interestingly, researchers expected Trp-cage would fold at least 1,000 times slower than it does, leaving its blinding speed “quite a mystery,” Hagen said.

There are two ways of probing how proteins attain their shape: experiments in the lab and computer simulations. UF researchers have done both with Trp-cage.

Hagen’s team, which included Roitberg and UF physics doctoral students Linlin Qiu and Suzette Pabit, used an advanced instrument called a laser temperature jump spectrometer to observe and time Trp-cage’s transition from its unfolded to its folded state. Roitberg also was part of a separate team collaborating with researchers from the State University of New York-Stonybrook that simulated Trp-cage’s structure on a computer based solely on its amino acid code. The results, reported last month in the Journal of the American Chemical Society, caused a stir in the scientific community because the simulated Trp-cage was extremely close in size and shape to that of the actual observed protein.

If such a computational method ever could be used to replicate larger, more-complex human proteins, it could speed the pace of research dramatically because the laboratory experimental approach is difficult, time consuming and expensive, Roitberg and Hagen said. For now, however, such a goal is far off, because computers are not yet powerful enough to quickly process all the information about each atom’s forces on all of the other atoms in larger proteins.

Roitberg’s team’s simulation of tiny Trp-cage required 16 computers and three weeks of computing time - another indication of the protein’s speedy folding rate. Although protein fragments have been observed to fold faster, the complete Trp-cage is one of a kind. “Here’s a molecule that is able to do in four microseconds what it takes these computers several weeks to do,” Hagen said.

Hagen said many diseases are tied to misshapen proteins. These include Alzheimer’s, Parkinson’s disease, Mad Cow Disease and others, Pande said. For biomedical researchers interested in genetic therapy to correct these proteins’ shapes, that naturally raises the question of how proteins mis-fold into botched versions. So while the news about Trp-cage’s folding pace has no immediate biomedical application, it contributes to increasing knowledge about this important process, Hagen said.

Stephen Hagen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>