Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ion channels allow bacteria to resist stomach acid

17.10.2002


Researchers have found that a primitive type of ion channel similar to those found in mammalian nerve cells helps bacteria resist the blast of acid they encounter in the stomach of their hosts.



The discovery suggests a plausible mechanism whereby bacteria can fend off stomach acidity long enough to establish themselves in the intestine. More broadly, said the scientists, the finding represents the first insight into why bacteria have forms of the same ion channels -- proteins that control the flow of ions through cell membranes -- found in higher organisms.

In an article published in the October 17, 2002, issue of the journal Nature, researchers led by Howard Hughes Medical Institute investigator Christopher Miller present evidence that the chloride ion channel is an integral part of the extreme acid resistance (XAR) response of the bacterium E. coli. Miller co-authored the paper with colleagues Ramkumar Iyer, Tina M. Iverson and Alessio Accardi, all of Brandeis University.


According to Miller, ion channels from bacteria have proven enormously useful to researchers studying the structure and function of ion channels because the bacteria enable the scientists to produce sufficient quantities of the proteins for their studies.

"As ion channel researchers, we’ve been so happy at the boon of high-quality protein we’ve received from these bacterial genomes, that the whole question of why the channels are even there has been largely ignored," said Miller. Fortunately, however, Miller’s postdoctoral fellow, Ramkumar Iyer, had the scientific intuition to explore whether the ion channels, known as ClC channels, might play a role in XAR.

"We had identified two chloride channel genes in the bacteria, and we decided to go on a fishing expedition to explore their function," said Miller. "When we first knocked them out, we saw no obvious changes in growth or behavior of the bacteria. Then, Ram decided to subject the altered bacteria to different stresses, reasoning that the channels might be involved in some kind of stress response. Otherwise, such channels in the membrane would prove deadly to [the bacteria]."

Iyer struck pay dirt with his first experiments, which showed that the altered bacteria could not survive when they were exposed to high acidity. According to Miller, previous studies indicated that when bacteria are exposed to a very low pH of about 2, two kinds of XAR genes are activated to draw certain amino acids -- glutamate or arginine -- into the cells. Additional XAR enzymes then decarboxylate these amino acids to form gamma-amino butyrate or agmatine in chemical reactions that consume acid. These decarboxylation products are then transported out of the cell, the whole cycle acting as a virtual proton pump that keeps the cytoplasm from becoming too acidic in the acidic environment of the stomach. However, said, Miller, these "proton pumps" -- because they move net positive charge outward -- would grind to a halt unless there were some way to "leak" chloride out of the bacterial cells.

"The chloride channel provides an electrical shunt or an electrical leak that allows the proton pump to keep turning over," said Miller. "If there are no chloride channels -- which is the case in our knockout E. coli -- as the proton pump moves positive charge outward, it builds up a negative voltage on the inside of the cell, and this voltage imbalance across the membrane essentially turns that pump off. The chloride channel enables the proton pump to function because it allows a negative chloride ion to leak out with every positively-charged proton that gets pumped out."

The researchers next tested whether the channel is activated by acid shock. When they inserted the isolated ion channel proteins into artificial membrane bubbles called liposomes and exposed them to low pH, they found that the channels increased their rate of chloride uptake about 10-fold.

"Our first guess is that like many channels, this one exists in an open and a closed state," said Miller. "And what switches this bacterial chloride channel to an open state is not a neurotransmitter or voltage change, as is the case with their homologs in the mammalian nervous system, but a high extracellular acid concentration."

Miller and his colleagues also noted that pathogenic bacteria such as those that cause cholera or salmonellosis also have genes for ClC channels, and these bacteria might use the same mechanism to survive stomach acid and invade the intestine.

The discovery of the chloride channel’s role in bacteria could offer insights into the function of some of the mammalian homologs of these channels, said Miller. "We have nine homologs of the ClC channels in our own genomes, and they are involved in numerous physiological functions," he said. "What’s striking is that researchers have developed evidence that some of these homologs appear to be involved in processes very similar to those we find in the XAR machinery of E. coli." For example, said Miller, researchers have evidence that the channels might play a role in the machinery that maintains necessary acidic conditions within the tiny sacs called endosomes that transport receptors from the cell surface into the cell interior. These functions, however, had their origins in the distant evolutionary past, he said.

"It seems a strong implication from our work in bacterial ion channels over the past five years that these are ancient proteins, and not specialized machines for the specialized cells such as nerve cells in higher organisms," he said. "What’s more, I would be very surprised if we didn’t discover that bacteria other than the ones that go through the stomach hadn’t developed uses other than the one we have found for these channels."

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org/

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>