Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ion channels allow bacteria to resist stomach acid


Researchers have found that a primitive type of ion channel similar to those found in mammalian nerve cells helps bacteria resist the blast of acid they encounter in the stomach of their hosts.

The discovery suggests a plausible mechanism whereby bacteria can fend off stomach acidity long enough to establish themselves in the intestine. More broadly, said the scientists, the finding represents the first insight into why bacteria have forms of the same ion channels -- proteins that control the flow of ions through cell membranes -- found in higher organisms.

In an article published in the October 17, 2002, issue of the journal Nature, researchers led by Howard Hughes Medical Institute investigator Christopher Miller present evidence that the chloride ion channel is an integral part of the extreme acid resistance (XAR) response of the bacterium E. coli. Miller co-authored the paper with colleagues Ramkumar Iyer, Tina M. Iverson and Alessio Accardi, all of Brandeis University.

According to Miller, ion channels from bacteria have proven enormously useful to researchers studying the structure and function of ion channels because the bacteria enable the scientists to produce sufficient quantities of the proteins for their studies.

"As ion channel researchers, we’ve been so happy at the boon of high-quality protein we’ve received from these bacterial genomes, that the whole question of why the channels are even there has been largely ignored," said Miller. Fortunately, however, Miller’s postdoctoral fellow, Ramkumar Iyer, had the scientific intuition to explore whether the ion channels, known as ClC channels, might play a role in XAR.

"We had identified two chloride channel genes in the bacteria, and we decided to go on a fishing expedition to explore their function," said Miller. "When we first knocked them out, we saw no obvious changes in growth or behavior of the bacteria. Then, Ram decided to subject the altered bacteria to different stresses, reasoning that the channels might be involved in some kind of stress response. Otherwise, such channels in the membrane would prove deadly to [the bacteria]."

Iyer struck pay dirt with his first experiments, which showed that the altered bacteria could not survive when they were exposed to high acidity. According to Miller, previous studies indicated that when bacteria are exposed to a very low pH of about 2, two kinds of XAR genes are activated to draw certain amino acids -- glutamate or arginine -- into the cells. Additional XAR enzymes then decarboxylate these amino acids to form gamma-amino butyrate or agmatine in chemical reactions that consume acid. These decarboxylation products are then transported out of the cell, the whole cycle acting as a virtual proton pump that keeps the cytoplasm from becoming too acidic in the acidic environment of the stomach. However, said, Miller, these "proton pumps" -- because they move net positive charge outward -- would grind to a halt unless there were some way to "leak" chloride out of the bacterial cells.

"The chloride channel provides an electrical shunt or an electrical leak that allows the proton pump to keep turning over," said Miller. "If there are no chloride channels -- which is the case in our knockout E. coli -- as the proton pump moves positive charge outward, it builds up a negative voltage on the inside of the cell, and this voltage imbalance across the membrane essentially turns that pump off. The chloride channel enables the proton pump to function because it allows a negative chloride ion to leak out with every positively-charged proton that gets pumped out."

The researchers next tested whether the channel is activated by acid shock. When they inserted the isolated ion channel proteins into artificial membrane bubbles called liposomes and exposed them to low pH, they found that the channels increased their rate of chloride uptake about 10-fold.

"Our first guess is that like many channels, this one exists in an open and a closed state," said Miller. "And what switches this bacterial chloride channel to an open state is not a neurotransmitter or voltage change, as is the case with their homologs in the mammalian nervous system, but a high extracellular acid concentration."

Miller and his colleagues also noted that pathogenic bacteria such as those that cause cholera or salmonellosis also have genes for ClC channels, and these bacteria might use the same mechanism to survive stomach acid and invade the intestine.

The discovery of the chloride channel’s role in bacteria could offer insights into the function of some of the mammalian homologs of these channels, said Miller. "We have nine homologs of the ClC channels in our own genomes, and they are involved in numerous physiological functions," he said. "What’s striking is that researchers have developed evidence that some of these homologs appear to be involved in processes very similar to those we find in the XAR machinery of E. coli." For example, said Miller, researchers have evidence that the channels might play a role in the machinery that maintains necessary acidic conditions within the tiny sacs called endosomes that transport receptors from the cell surface into the cell interior. These functions, however, had their origins in the distant evolutionary past, he said.

"It seems a strong implication from our work in bacterial ion channels over the past five years that these are ancient proteins, and not specialized machines for the specialized cells such as nerve cells in higher organisms," he said. "What’s more, I would be very surprised if we didn’t discover that bacteria other than the ones that go through the stomach hadn’t developed uses other than the one we have found for these channels."

Jim Keeley | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>