Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ion channels allow bacteria to resist stomach acid

17.10.2002


Researchers have found that a primitive type of ion channel similar to those found in mammalian nerve cells helps bacteria resist the blast of acid they encounter in the stomach of their hosts.



The discovery suggests a plausible mechanism whereby bacteria can fend off stomach acidity long enough to establish themselves in the intestine. More broadly, said the scientists, the finding represents the first insight into why bacteria have forms of the same ion channels -- proteins that control the flow of ions through cell membranes -- found in higher organisms.

In an article published in the October 17, 2002, issue of the journal Nature, researchers led by Howard Hughes Medical Institute investigator Christopher Miller present evidence that the chloride ion channel is an integral part of the extreme acid resistance (XAR) response of the bacterium E. coli. Miller co-authored the paper with colleagues Ramkumar Iyer, Tina M. Iverson and Alessio Accardi, all of Brandeis University.


According to Miller, ion channels from bacteria have proven enormously useful to researchers studying the structure and function of ion channels because the bacteria enable the scientists to produce sufficient quantities of the proteins for their studies.

"As ion channel researchers, we’ve been so happy at the boon of high-quality protein we’ve received from these bacterial genomes, that the whole question of why the channels are even there has been largely ignored," said Miller. Fortunately, however, Miller’s postdoctoral fellow, Ramkumar Iyer, had the scientific intuition to explore whether the ion channels, known as ClC channels, might play a role in XAR.

"We had identified two chloride channel genes in the bacteria, and we decided to go on a fishing expedition to explore their function," said Miller. "When we first knocked them out, we saw no obvious changes in growth or behavior of the bacteria. Then, Ram decided to subject the altered bacteria to different stresses, reasoning that the channels might be involved in some kind of stress response. Otherwise, such channels in the membrane would prove deadly to [the bacteria]."

Iyer struck pay dirt with his first experiments, which showed that the altered bacteria could not survive when they were exposed to high acidity. According to Miller, previous studies indicated that when bacteria are exposed to a very low pH of about 2, two kinds of XAR genes are activated to draw certain amino acids -- glutamate or arginine -- into the cells. Additional XAR enzymes then decarboxylate these amino acids to form gamma-amino butyrate or agmatine in chemical reactions that consume acid. These decarboxylation products are then transported out of the cell, the whole cycle acting as a virtual proton pump that keeps the cytoplasm from becoming too acidic in the acidic environment of the stomach. However, said, Miller, these "proton pumps" -- because they move net positive charge outward -- would grind to a halt unless there were some way to "leak" chloride out of the bacterial cells.

"The chloride channel provides an electrical shunt or an electrical leak that allows the proton pump to keep turning over," said Miller. "If there are no chloride channels -- which is the case in our knockout E. coli -- as the proton pump moves positive charge outward, it builds up a negative voltage on the inside of the cell, and this voltage imbalance across the membrane essentially turns that pump off. The chloride channel enables the proton pump to function because it allows a negative chloride ion to leak out with every positively-charged proton that gets pumped out."

The researchers next tested whether the channel is activated by acid shock. When they inserted the isolated ion channel proteins into artificial membrane bubbles called liposomes and exposed them to low pH, they found that the channels increased their rate of chloride uptake about 10-fold.

"Our first guess is that like many channels, this one exists in an open and a closed state," said Miller. "And what switches this bacterial chloride channel to an open state is not a neurotransmitter or voltage change, as is the case with their homologs in the mammalian nervous system, but a high extracellular acid concentration."

Miller and his colleagues also noted that pathogenic bacteria such as those that cause cholera or salmonellosis also have genes for ClC channels, and these bacteria might use the same mechanism to survive stomach acid and invade the intestine.

The discovery of the chloride channel’s role in bacteria could offer insights into the function of some of the mammalian homologs of these channels, said Miller. "We have nine homologs of the ClC channels in our own genomes, and they are involved in numerous physiological functions," he said. "What’s striking is that researchers have developed evidence that some of these homologs appear to be involved in processes very similar to those we find in the XAR machinery of E. coli." For example, said Miller, researchers have evidence that the channels might play a role in the machinery that maintains necessary acidic conditions within the tiny sacs called endosomes that transport receptors from the cell surface into the cell interior. These functions, however, had their origins in the distant evolutionary past, he said.

"It seems a strong implication from our work in bacterial ion channels over the past five years that these are ancient proteins, and not specialized machines for the specialized cells such as nerve cells in higher organisms," he said. "What’s more, I would be very surprised if we didn’t discover that bacteria other than the ones that go through the stomach hadn’t developed uses other than the one we have found for these channels."

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>