Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geneticists tell ostrich farmers the secrets of sex

16.10.2002


Research published in the online journal, BMC Biotechnology reports on a new, large-scale technique for distinguishing between male and female ostrich chicks using DNA extracted from feathers. This new technique will remove the need for invasive procedures currently in use to sex-type ostriches and allow breeders to discover the sex of their chicks much earlier. Details of this new technique can now be read by all interested parties because of the decision of the authors to publish in the open access journal, BMC Biotechnology.



Although native to Africa, Ostriches are now farmed all over the world for their meat, feathers and hide. Ostriches, like many bird species, show few external differences between the sexes. In the 1960’s a surgical technique was developed to tell male and female birds apart, which involved a small operation under anaesthetic. However, this procedure can result in bleeding and infection, as well as being stressful for the birds. In addition, ostrich chicks must be around three months old before their sex can be distinguished in this way.

For most birds genetic tests have largely replaced surgery as a means of determining the sex of a chick. However, genetic tests are usually based on differences between genes carried on sex chromosomes. Unfortunately, the sex chromosomes in ostriches are very similar making these sort of genetic tests useless. Whilst some new tests have been devised, they are not suitable for the large-scale analyses that are needed by commercial ostrich breeders.


To solve this problem, researchers from Brazil have devised a fast, large-scale technique, which can be used to sex-type ostriches from feathers. They used feathers rather than blood samples because it is more practical for farmers and less stressful for the birds to collect feather samples. The procedure involves a genetic technique known as the polymerase chain reaction (PCR) which can "amplify" fragments of DNA that are specific to male or female ostriches. The researchers used their technique to sex-type 96 five-day-old ostrich chicks. Three months later, the sex of the chicks was also determined by using the traditional surgical technique. To their delight the researchers found that there was 100% agreement between the new genetic technique and the traditional surgical procedure, confirming that their method worked.

"We have established a fast, safe and inexpensive procedure for large-scale sex-typing of ostriches using DNA extracted from feathers. This procedure will be useful the gender identification of chicks in the first days of nestling life", explained the authors.

Gordon Fletcher | BioMed Central

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>