Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New studies advance scientific knowledge of drinking water disinfection byproducts

16.10.2002


Studies published in International Journal of Toxicology



In its September/October issue, the International Journal of Toxicology is pleased to publish the last in a series of four studies examining possible reproductive and developmental health effects from two byproducts of drinking water chlorination. These studies fill significant data gaps identified by a Federal Advisory Committee formed by the U.S. Environmental Protection Agency (EPA) on drinking water regulations.

Small amounts of disinfection byproducts, including bromodichloromethane (BDCM) and dibromoacetic acid (DBA), are formed in drinking water when chlorine disinfectants combine with naturally occurring organic matter. Several epidemiology studies have reported a possible association between these byproducts and adverse reproductive outcomes, including spontaneous abortion. Because the existing toxicology data was very limited, the Federal Advisory Committee recommended that BDCM, in particular, should be thoroughly studied for a potential causal relationship to reproductive and developmental toxicity.


To address these data gaps, researchers at Argus Research Laboratories examined laboratory animals exposed to BDCM and DBA through drinking water. Each study found no adverse effects at dose levels thousands of times higher than those to which humans are exposed. Based on the results of these studies, the researchers concluded that BDCM and DBA are unlikely to pose a reproductive or developmental health risk to humans. EPA will review this research as it develops new regulations on disinfection byproducts.

The studies were designed to comply with the EPA’s Federal Insecticide Fungicide and Rodenticide Act (FIFRA) Guidelines and with the EPA’s Guidelines for Good Laboratory Practices. Each study was independently monitored. In addition, an independent panel of experts reviewed the study designs and interpretation of data. The studies were sponsored by the Research Foundation for Health and Environmental Effectsâ, a tax-exempt foundation established by the Chlorine Chemistry Council.

Following are brief summaries of each study:

Biodisposition of DBA and BDCM in Rats and Rabbits

Christian, et al. 2001. Biodisposition of Dibromoacetic acid (DBA) and Bromodichloromethane (BDCM) Administered to Rats and Rabbits in Drinking Water During Range-Finding Reproduction and Developmental Toxicity Studies. International Journal of Toxicology, 20:239-253.

The study evaluated whether detectable concentrations of DBA or BDCM were absorbed from the drinking water provided to rats and rabbits and whether there were detectable levels of either DBA or BDCM present in the maternal blood, placentas, fetuses, pups, or maternal milk. No quantifiable concentrations of BDCM were found, suggesting that BDCM is rapidly degraded or metabolized in the body. DBA produced quantifiable concentrations in the maternal blood, placentas, fetuses, pups, and maternal milk. No reproductive and developmental effects were observed in these preliminary studies, suggesting that neither DBA nor BDCM are reproductive or developmental risks for humans.

Developmental Toxicity Studies of BDCM

Christian et al. 2001. Oral (Drinking Water) Developmental Toxicity Studies of Bromodichloromethane (BDCM) in Rats and Rabbits. International Journal of Toxicology, 20:225-237.

Two studies, one using rats and one using rabbits, evaluated pregnant animals exposed to BDCM concentrations of 0, 15(rats), 50 (rabbits), 150, 450, and 900 parts per million (ppm) in drinking water. By comparison, drinking water concentrations of BDCM rarely exceed 0.025 parts per million. Researchers observed no adverse developmental effects at concentrations up to 450 ppm in rats and 900 ppm in rabbits. Based on the results of these studies, the authors concluded, "BCDM should not be identified as a risk to [human] development."

Reproductive Toxicity Study of BDCM

Christian et al. 2002. Oral (Drinking Water) Two-Generation Reproductive Toxicity Study of Bromodichloromethane (BDCM) in Rats. International Journal of Toxicology, 21:115-146.

The study evaluated rats exposed to BDCM concentrations of 0, 50, 150 and 450 ppm in drinking water. In this study, the researchers observed no adverse reproductive or developmental effects at any of these concentrations. Based on the results of this study, the authors concluded, "BCDM should not be identified as a risk to human reproductive performance or development."

Reproductive Toxicity Study of DBA

Christian et al. 2002. Oral (Drinking Water) Two-Generation Reproductive Toxicity Study of Dibromoacetic Acid (DBA) in Rats. International Journal of Toxicology, 21:237-276.

The study evaluated rats exposed to DBA concentrations of 0, 50, 250 and 650 ppm in drinking water. Researchers observed no adverse effects at 50 ppm, an estimated 45,000 – 116,000 times the human adult exposure level. Based on the high multiples of human exposure required to produce effects, the study authors concluded, "DBA should not be identified as a human reproductive or developmental risk."

Dr. Bruce Bernard | EurekAlert!

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>