Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study backs theory that accumulating mutations of ’quiet’ genes foster aging

15.10.2002


A theory that suggests the aging process might be safely slowed by targeting genes that are quiet early but threaten damage later in life has gotten a boost from new findings from the University of Illinois at Urbana-Champaign.



The researchers don’t promote such tinkering in their paper, which appears online this week in advance of publication by the Proceedings of the National Academy of Sciences. Rather they detail their tests, based on models of mathematical prediction, of the two leading evolutionary theories of aging on the reproductive success of 100 different genotypes of fruit flies (Drosophila melanogaster) across various age groups.

The results suggest that more needs to be learned about which genes do what and when in the aging process so that artificial manipulation does not cause evolutionary damage in future generations, said Kimberly A. Hughes, an animal biologist in the Program in Ecology and Evolutionary Biology at Illinois.


The study provides the strongest support yet for the theory of mutation accumulation (MA), Hughes said. The theory, which has been difficult for scientists to test, proposes that aging is the result of an accumulation of mutations of genes that are kept in check by reproductive-oriented selection processes early in life and only are active later on.

Examples are genes associated with Huntington’s disease and forms of cancer that strike late in life. Such mutations exist in prime reproductive years but only have noticeable effects late in life. In old age, when reproduction is not an organism’s primary function, accumulating mutations are no longer checked by selection, increasing the risk of disease.

The other, more widely accepted theory of antagonistic pleiotrophy (AP) says that aging occurs when genes that offer help during the reproductive years -- those that produce estrogen, for example -- take on harmful roles later in life. Selection under AP theory favors the early life effects because these lead to the production of offspring but does not oppose the deleterious effects in late life, Hughes said.

Building on her theoretical study of age-related inbreeding depression and genetic variability (PNAS, June 1996) while a doctoral student at the University of Chicago, Hughes and colleagues raised fruit flies to test the effect of delayed mutations.

The new study found that the deleterious effects of mutations on reproduction rose dramatically with age during the reproductive years in both genotypes -- homozygous (those with many identical genes, or inbreeding) and heterozygous (those having a variety of genes present). Reproductive success declined more rapidly, however, in the homozygous lines, as predicted by the MA theory.

"This study allowed us to detect certain kinds of genetic effects called dominance variance that are predicted to increase with age only under the MA theory," Hughes said. "The power to detect these effects is critical to tests of evolutionary aging theories, because an age-related increase appears to be a unique prediction of the MA theory, while other kinds of genetic effects can increase under either model."

While the study shows support for the MA theory, the scenario under the antagonistic pleiotrophy theory is not discounted. "They are not mutually exclusive,Ó Hughes said. "They can both be happening. Both kinds of genes can be accumulating.Ó

If geneticists try to remove bad late-in-life effects of a gene that has a positive role early in life, then its overall function could be negatively altered in future generations, Hughes said. Manipulating genes with no early life benefits to negate their deleterious late life effects, she said, might not cause negative evolutionary changes in the future.


The authors of the paper are Hughes, postdoctoral researcher Jenny M. Drnevich and doctoral student Rose M. Reynolds, all of Illinois, and former postdoctoral associate Julie A. Alipaz, who now is at Harvard University.

The National Science Foundation, National Institutes of Health and the School of Integrative Biology at Illinois funded the research.

Jim Barlow | EurekAlert!

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>