Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shadow proteins in thymus - Clues to how immune system works?

11.10.2002


Findings could lead to new understanding of diabetes, Crohn’s, and more



Researchers at Joslin Diabetes Center, Harvard Medical School, and other institutions have identified the function of a protein, dubbed aire, that is critical to helping immune cells learn to recognize--and avoid attacking--the far-flung organs and tissues of the body. The protein appears to work by turning on in the thymus, which lies beneath the breast bone, the production of a wide array of proteins from the body’s periphery. The discovery could shed light not only on how the healthy immune system develops tolerance to its own proteins but also how tolerance is lost, as it is in diabetes, rheumatoid arthritis, Crohn’s disease and other autoimmune illnesses.

"Our findings lead back to humans because they tell us about a very important mechanism for controlling autoimmunity," said Diane Mathis, a Harvard Medical School professor of medicine at Joslin. "At the same time, they may help us understand why people develop autoimmune diseases." The findings are reported in the Oct. 11 Science.


Until recently, immune cells, in particular T cells, were thought to learn their most basic lesson--attack foreign proteins but spare those that are native--in one of two places. Those with a broad mandate, namely to monitor widely expressed cellular proteins or proteins circulating in the bloodstream, were thought to be trained to distinguish self from foreign proteins while still in the thymus. Cells that recognize proteins in organs and tissues in the periphery, such as the pancreas, thyroid, and adrenals, were believed to learn the self-vs.-nonself lesson once they left the thymus. This organ was thought incapable of producing proteins made by distant organs such as the liver, brain, and pancreas.

But it appears that T cells in training may be learning the lesson while still in the thymus. Building on work of other groups, first author Mark Anderson, a research fellow in medicine at Joslin; Emily Venanzi, a Harvard Medical School graduate student in immunology; Christophe Benoist, a professor of medicine at Joslin; Mathis, and colleagues, reported that a small network of thymic cells, the medullary epithelial cells, expresses hundreds of genes usually associated with organs such as the pancreas, brain, and liver.

"No one would think you would encounter your big toe protein in the thymus, but in fact proteins from the eye, the liver, from all over the place are specifically expressed in a small population of stromal cells in the thymus," said Benoist.

A majority of these expressed proteins are used by the peripheral organs to tell T cells to stay away. Indeed, the researchers believe the proteins are used in the thymus to foreshadow the very self-antigens that the T cells will encounter once they travel out into the body. "There is a foretelling of these proteins in the thymus, which is why we call it an immunological self-shadow," said Mathis.

In a critical step, the Joslin team discovered that the transcription factor aire plays a critical role in producing these self-shadow proteins in the thymus (hence its name, which is formed from two letters in each word of autoimmune regulator). Mutant mice lacking aire exhibited in their thymus only a fraction of the peripheral self-proteins found in the thymus of normal mice. And the mutants exhibited widespread autoimmunity. In fact, their condition was reminiscent of a condition found in humans carrying a defective AIRE gene, autoimmune polyglandular syndrome.

It is not yet clear how the shadow proteins educate developing T cells inside the thymus, though Benoist suspects the processes are similar to those used to eliminate T cells that react to ubiquitous or circulating proteins. Nor is it clear how aire controls the expression of so many shadow proteins. One possibility is that it works by binding to other transcription factors. "It is going to be interesting to figure out what the mechanism really is," she said.

While novel, the mechanism is probably only one of many that the immune system uses to educate peripheral T cells about the self-vs.-foreign distinction. "It is very dangerous for the immune system to have self-reactive T cells," Anderson said. "It takes advantage of any mechanism to get rid of these cells. So there is a whole net of mechanisms."

Marge Dwyer | EurekAlert!

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>