Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shadow proteins in thymus - Clues to how immune system works?

11.10.2002


Findings could lead to new understanding of diabetes, Crohn’s, and more



Researchers at Joslin Diabetes Center, Harvard Medical School, and other institutions have identified the function of a protein, dubbed aire, that is critical to helping immune cells learn to recognize--and avoid attacking--the far-flung organs and tissues of the body. The protein appears to work by turning on in the thymus, which lies beneath the breast bone, the production of a wide array of proteins from the body’s periphery. The discovery could shed light not only on how the healthy immune system develops tolerance to its own proteins but also how tolerance is lost, as it is in diabetes, rheumatoid arthritis, Crohn’s disease and other autoimmune illnesses.

"Our findings lead back to humans because they tell us about a very important mechanism for controlling autoimmunity," said Diane Mathis, a Harvard Medical School professor of medicine at Joslin. "At the same time, they may help us understand why people develop autoimmune diseases." The findings are reported in the Oct. 11 Science.


Until recently, immune cells, in particular T cells, were thought to learn their most basic lesson--attack foreign proteins but spare those that are native--in one of two places. Those with a broad mandate, namely to monitor widely expressed cellular proteins or proteins circulating in the bloodstream, were thought to be trained to distinguish self from foreign proteins while still in the thymus. Cells that recognize proteins in organs and tissues in the periphery, such as the pancreas, thyroid, and adrenals, were believed to learn the self-vs.-nonself lesson once they left the thymus. This organ was thought incapable of producing proteins made by distant organs such as the liver, brain, and pancreas.

But it appears that T cells in training may be learning the lesson while still in the thymus. Building on work of other groups, first author Mark Anderson, a research fellow in medicine at Joslin; Emily Venanzi, a Harvard Medical School graduate student in immunology; Christophe Benoist, a professor of medicine at Joslin; Mathis, and colleagues, reported that a small network of thymic cells, the medullary epithelial cells, expresses hundreds of genes usually associated with organs such as the pancreas, brain, and liver.

"No one would think you would encounter your big toe protein in the thymus, but in fact proteins from the eye, the liver, from all over the place are specifically expressed in a small population of stromal cells in the thymus," said Benoist.

A majority of these expressed proteins are used by the peripheral organs to tell T cells to stay away. Indeed, the researchers believe the proteins are used in the thymus to foreshadow the very self-antigens that the T cells will encounter once they travel out into the body. "There is a foretelling of these proteins in the thymus, which is why we call it an immunological self-shadow," said Mathis.

In a critical step, the Joslin team discovered that the transcription factor aire plays a critical role in producing these self-shadow proteins in the thymus (hence its name, which is formed from two letters in each word of autoimmune regulator). Mutant mice lacking aire exhibited in their thymus only a fraction of the peripheral self-proteins found in the thymus of normal mice. And the mutants exhibited widespread autoimmunity. In fact, their condition was reminiscent of a condition found in humans carrying a defective AIRE gene, autoimmune polyglandular syndrome.

It is not yet clear how the shadow proteins educate developing T cells inside the thymus, though Benoist suspects the processes are similar to those used to eliminate T cells that react to ubiquitous or circulating proteins. Nor is it clear how aire controls the expression of so many shadow proteins. One possibility is that it works by binding to other transcription factors. "It is going to be interesting to figure out what the mechanism really is," she said.

While novel, the mechanism is probably only one of many that the immune system uses to educate peripheral T cells about the self-vs.-foreign distinction. "It is very dangerous for the immune system to have self-reactive T cells," Anderson said. "It takes advantage of any mechanism to get rid of these cells. So there is a whole net of mechanisms."

Marge Dwyer | EurekAlert!

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>