Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chestnuts used chemicals to dominate southern Appalachian forests

11.10.2002


USDA Forest Service research confirms that chemicals in the leaves of the American chestnut suppress the growth of other trees and shrubs-and probably played a part in the species’ past dominance of the southern Appalachian forest.



Southern Research Station ecologist Barry Clinton (Coweeta Hydrologic Laboratory)-with fellow researchers from Clemson University and the University of North Carolina-Chapel Hill-tested the effects of fallen chestnut leaves on five tree species that historically competed with the American chestnut before chestnut blight destroyed almost all of the great trees.

"American chestnut reached its greatest size and stand density in the southern Appalachians, where it may have taken up almost 50 percent of the forest canopy," said Clinton. "Chestnut’s dominance has traditionally been attributed to its rapid growth rate, resistance to rot and fire, and ability to thrive on poor soil. Our experiments show that allelopathy may also have contributed to its dominance."


Allelopathy is the secretion by plants of chemicals that inhibit the growth or reproduction of competing plant species. Black walnut is a prime example of allelopathy: the tree produces the chemical Juglone, which suppresses the growth of trees, shrubs, and other vegetation. Other allelopathic trees include sycamore, eucalyptus, and hackberry.

Clinton and his fellow researchers tested the effects of an extract made from the leaves of young American chestnut trees on the seeds of red maple, eastern white pine, eastern hemlock, yellow-poplar, and the native shrub rosebay rhododendron. Under controlled laboratory conditions, the researchers found that the extracts inhibited the germination of eastern hemlock and rosebay rhododendron. Eastern hemlock is a major species along the mountain streams of the Southern Appalachians. Rosebay rhododendron has become the dominant shrub on moist sites, where it interferes with hardwood regeneration and threatens the diversity of cove forests.

"Our results suggest that chestnut may have had a controlling effect on rhododendron germination and growth in the past," said Clinton, "and that the rapid encroachment of this shrub in the 20th century may be largely due to the end of the tree’s allopathic influence."

One of the most interesting results of the experiment was the ability of chestnut leaf extract to suppress the germination of eastern hemlock, which has steadily migrated into the chestnut-blighted areas of southern Appalachian forests.

"We have anecdotal evidence that eastern hemlock, which also has allelopathic qualities, can inhibit chestnut seeds from sprouting," said Clinton. "Historical accounts show that these trees rarely occurred together in pre-blight forests. We are starting to get a picture of the dynamic competitive relationship that once existed between these two important southern Appalachian tree species."

Results from the experiment on chestnut allelopathy are published in the July 15, 2002 issue of Forest Ecology and Management, which is available from the SRS website in full text formats at http://www.srs.fs.fed.us/pubs/viewpub.jsp?index=4723.

For more information: Barry Clinton at (828-524-2128) or bclinton@fs.fed.us

Barry Clinton | EurekAlert!
Further information:
http://www.srs.fs.fed.us/pubs/viewpub.jsp?index=4723

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>