Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RRF Recycles Form, Not Exact Function

10.10.2002


Ribosome Recycling Factor Mimics Shape, But Not The Functions of Transfer RNA


RRF Protein Offers Potential Target for New Antibiotics


The fact that ribosome recycling factor (RRF) looks a lot like transfer RNA (tRNA) has not been lost on scientists. After all, both molecules are an important part of a bacteria’s ability to create new proteins. Researchers at the University of Pennsylvania School of Medicine and the University of Southern California, Santa Cruz, however, have found that this case of molecular mimicry has more to do with the shape of the molecules and not necessarily the job they perform. Their structural analysis of the RRF ribosome complex, presented in the current issue of the journal Cell, shows that RRF does not bind to the ribosome in the same location as tRNA.

"It is said that form follows function, but we see here that is not always true," said Akira Kaji, PhD, from Penn’s Department of Microbiology. "The L-shaped structure of both RRF and tRNA may have more to do with the spatial constraints of maneuvering within the folds of the ribosome than their actual tasks."



The actual task of the ribosome recycling factor has been something of a mystery for researchers. Until recently, science was unaware of its role in the process of creating proteins - and its potential as a target for new antibiotics.

Protein manufacture is a fundamental process of life that has been understood better in concept than in mechanics. While the DNA may encode the blueprints used to create proteins, it is the ribosome - an organelle within the cell - that actually builds a new protein.

There are three steps that are generally considered part of the scientific dogma surrounding the creation of new proteins: Initiation (the start of building a protein from messenger RNA that has been transcribed from DNA); Elongation (adding new amino acids to chain that becomes the protein via tRNA); and Termination (capping the amino acid chain off, so that it can be folded into a protein).

"There is one more crucial step that we had missed for a long time: recycling," said Kaji. It is the step where the machinery of the protein synthesis is "recycled" so that they can be used for the next round of protein synthesis. This step does not happen by magic, and we have to ask - How do you disassemble the complex of the protein synthesis machinery so that they can be used again for the next round of translation?

According to Kaji and his colleagues, RRF binds to different locations within the ribosomal complex at different times. It seems that, if the ribosome is the protein factory, the RRF is the foreman, moving from location to location to ’supervise’ the end of the assembly line. When the new protein is completed, RRF works in conjunction with other proteins to disassemble the ribosomal complex so that the components of the machinery are ready for the next round of protein creation.

Kaji believes that, since RRF plays the key role only in bacteria and mitochondria, the bacterial protein also provides an interesting target for new types of anti-bacterial agents. His research has already shown in the laboratory that bacteria lacking RRF cannot exist because of their inability to create new proteins.

"As bacteria mutate to become resistant to antibiotics, we must keep targeting parts of bacteria that are integral for functioning so that bacteria can not out-evolve antibiotics," said Kaji. "We are considering RRF as the target of a new type of antibiotic, an inhibitor of RRF that we can easily alter as bacteria become resistant."

Other scientists contributing to the research presented in Cell include Michael C. Kiel of Penn and Laura Lancaster and Harry F. Noller of the University of California at Santa Cruz.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>