Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar pecking order and biodiversity

07.10.2002


New research into how biodiversity is generated and maintained in the seas surrounding hostile Polar Regions is reported in this month`s Proceedings of the Royal Society (Biological Sciences).



British Antarctic Survey biologist David Barnes studied `battles` between rock-dwelling marine organisms in shallow seas from the Poles to tropics to come up with a `league table` and a `polar pecking order` that lead to a greater understanding of extreme environments and how marine organisms may react to global change.

Barnes found that the battle for survival in the shallow seas surrounding the Polar Regions is much tougher than in the tropics. Not only must small aquatic animals (Bryozoa) compete for space to get food, they also have to contend with massive destruction of their habitat by icebergs and rough seas. However, by a strange twist of fate, these harsh conditions appear to increase biodiversity.


Barnes suggests that it is the very disturbance from ice and waves that ensures the long-term survival of these animals and increases biodiversity. He concludes that without a continuing battle against the extreme environment, polar aquatic animals at the top of the pecking order would out-compete other species and reduce biodiversity. Global climate change, however, could tip the balance in favour to those species at the top of the pecking order.

He says, `Small aquatic animals - bryozoans - that occur all over the world in very different environments were the ideal organism for this study. Although `a pecking order` exists in animals from elephant seals to bryozoans, until now we didn`t know what role this played in biodiversity. In tropical seas for example, battles between species often end in a draw and a wide variety species continue to live in this environment. Whilst in the Polar Regions one dominant species usually comes out on top. If it were not for the battering by ice the result could be monoculture.`

Linda Capper | alfa
Further information:
http://www.antarctica.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>