Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar pecking order and biodiversity

07.10.2002


New research into how biodiversity is generated and maintained in the seas surrounding hostile Polar Regions is reported in this month`s Proceedings of the Royal Society (Biological Sciences).



British Antarctic Survey biologist David Barnes studied `battles` between rock-dwelling marine organisms in shallow seas from the Poles to tropics to come up with a `league table` and a `polar pecking order` that lead to a greater understanding of extreme environments and how marine organisms may react to global change.

Barnes found that the battle for survival in the shallow seas surrounding the Polar Regions is much tougher than in the tropics. Not only must small aquatic animals (Bryozoa) compete for space to get food, they also have to contend with massive destruction of their habitat by icebergs and rough seas. However, by a strange twist of fate, these harsh conditions appear to increase biodiversity.


Barnes suggests that it is the very disturbance from ice and waves that ensures the long-term survival of these animals and increases biodiversity. He concludes that without a continuing battle against the extreme environment, polar aquatic animals at the top of the pecking order would out-compete other species and reduce biodiversity. Global climate change, however, could tip the balance in favour to those species at the top of the pecking order.

He says, `Small aquatic animals - bryozoans - that occur all over the world in very different environments were the ideal organism for this study. Although `a pecking order` exists in animals from elephant seals to bryozoans, until now we didn`t know what role this played in biodiversity. In tropical seas for example, battles between species often end in a draw and a wide variety species continue to live in this environment. Whilst in the Polar Regions one dominant species usually comes out on top. If it were not for the battering by ice the result could be monoculture.`

Linda Capper | alfa
Further information:
http://www.antarctica.ac.uk

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>