Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny technology leads to big changes in DNA research at Argonne

07.10.2002


New gene therapy procedures, DNA-based sensors, and other medical applications may be possible using a new method to initiate and control chemical reactions on DNA strands, developed by a team of chemists at the U.S. Department of Energy’s Argonne National Laboratory. The new technology uses specially designed nanometer-sized semiconductors--less than a billionth of an inch in size.



The technology is based on the group’s discovery of "conductive linkers"--small organic molecules that connect the electronic properties of semiconductors to biological or organic molecules. The scientists have used conductive linkers to connect strands of DNA to titanium dioxide crystals measuring only 4.5 nanometers in diameter (a nanometer is about 10,000 times narrower than a human hair).

In the presence of light, a titanium dioxide nanocrystal acts as a semiconductor, generating strong oxidizing power that attacks organic molecules in the same uncontrollable way that laundry bleach attacks all colors in the wash. The researchers found that by using different conductive linkers they can selectively control oxidation.


These nanoparticles have a wide range of potential applications in DNA-based sensing devices. The scientists use the speed of electron transfers to determine the sequence and structure of DNA strands. The four bases that make up DNA are known to have different electronic properties that vary with the sequence and structure of the DNA strand. Guanine is the most readily oxidized, and therefore has the fastest reaction. It is followed, in decreasing order of reactivity, by adenine, cytosine and thymine. By activating the titanium dioxide with light, the team can study the reactions and determine the sequence by comparing the speed and efficiency of the reactions.

The team is part of the Argonne Chemistry Division and includes Chemistry Division Director Marion Thurnauer and chemists Tijana Rajh, David Tiede and Lin Chen. In addition, the team has collaborated with Gayle Woloshak of Northwestern University, formerly of Argonne, to exploit this chemistry for use in gene therapy.

In the body, proteins called restriction enzymes are normally used to recognize and cut defective gene sequences. The researchers have created a novel "artificial restriction enzyme" that can be focused and controlled by light.

For example, a synthetic DNA single strand containing the sequence of a genetic defect can be linked to titanium dioxide. The researchers have shown that the DNA strand will carry the attached titanium dioxide to the cell nucleus, and presumably to the site of the genetic defect on the chromosome. Light will initiate the oxidative chemistry, which clips the defective gene and permits repair with a healthy gene sequence.


The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago as part of the U.S. Department of Energy’s national laboratory system.

Katie Williams | EurekAlert!
Further information:
http://www.anl.gov/

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>