Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue creates self-generating nanotubes with ’dial-up’ properties

04.10.2002


Nanotubes, stringy supermolecules already used to create fuel cell batteries and tiny computer circuits, could find myriad new applications ranging from disease treatment to plastics manufacturing to information storage, reports a Purdue University research team.


A self-assembled rosette nanotube and its mirror image prepared in the Fenniri laboratory. These materials are now made with predefined chiroptical, physical and chemical properties. The Fenniri group’s nanotubes promote their own formation and offer numerous potential applications.
(Purdue University Department of Chemistry)



Scientists led by Purdue chemist Hicham Fenniri have learned to create multiple species of nanotubes that possess unprecedented physical and chemical properties, each of which could lead to a different industrial application. Also unprecedented is the compete control they have over the nanotubes’ formation, which allows the team to virtually "dial up" the properties they wish their nanotubes to possess. The findings could greatly expand the materials available for use on the nanoscale.

"Instead of being limited to building blocks of one size, shape and color, it’s as though we now have a brickyard with many different varieties," Fenniri said. "This research could give a nanotechnologist a lot more materials for construction."


The research will appear Saturday (8/24) on the Journal of the American Chemical Society’s Web site. A print publication date has not yet been determined.

Since their discovery in 1991, nanotubes have become one of the most promising building blocks for nanotechnology. Last year, Japan’s NEC Corp. developed a nanotube-based fuel cell battery that could power a notebook computer for days rather than hours. At about the same time, IBM researchers found a way to create logic circuits from individual carbon nanotubes, which could make them an alternative to silicon in future computers. After several years of pursuing their own research, Fenniri’s group has discovered a new class of nanotubes that could dramatically expand their uses in industry.

Rather than work with carbon or metals, as other groups have done, the Fenniri team has formed nanotubes out of synthetic organic molecules. While other materials have distinct advantages, they are not as easily managed as the materials the Fenniri team is working with.

"By using synthetic chemistry, we have gained complete control over the formation of our nanotubes," Fenniri said. "More control in the lab should give more options to industry."

One way the new nanotubes can be customized is by using them as scaffolding for other materials. Fenniri’s nanotube looks like a spiral-shaped stack of rings; each ring is made of six molecules shaped roughly like pie wedges. On the outside of the spiral, the team has learned to attach other molecules, which hang off the tubes like charms on a charm bracelet. The attached molecules then lend their properties to the outside of the nanotube.

For example, if the component molecules of nylon are attached, the nanotubes can then be turned into very long and flexible fibers that are, nonetheless, very strong.

"They could be made into an improved version of nylon," Fenniri said. "And nylon has a lot more uses than making your socks stretch. We could use these fibers to reinforce everything from boat hulls and aircraft to body armor and parachutes."

Another secret to creating custom-made tubes lies in manipulating a property called chirality, which has to do with the direction the spiral-shaped tubes twist. Nature only twists molecules in one direction – this is why DNA molecules always twist to the right, and are described as having right-handed chirality. But Fenniri’s team can make tubes that twist in either direction, creating left-handed nanotubes with abilities that their right-handed cousins often do not have.

"We can create two nanotubes that are made of the same materials, but that behave differently," Fenniri said. "Just like a flipped-over puzzle piece doesn’t fit in its hole, a left-handed nanotube can react with different substances than its corresponding right-handed tube."

While experimenting with controlling their nanotubes’ properties, the Fenniri team discovered some unexpected behaviors their nanotubes exhibit.

"We have found that the nanotubes promote their own formation," Fenniri said. "Such behavior is very reminiscent of living systems, in that they replicate and adapt to their environment."

Realizing that their homegrown nanotubes catalyze their own formation opened a whole new field of research for the team. They found that by placing the raw materials from which nanotubes form into a test tube, then adjusting such conditions as temperature and pressure, the nanotubes could organize themselves into one of many different configurations, several never seen previously.

"You could imagine that one type of nanotube forms at 25 degrees Celsius, but another type with very different physical and chemical properties would form at 70 degrees," Fenniri said. "That’s a simplification, of course, but it illustrates the principles we have uncovered."

The relative ease of manipulating the properties of nanotubes makes Fenniri optimistic that many new applications will be possible. One possibility is to use the nanotubes in disease treatment.

"Many drugs destroy infectious bacteria by poking holes in their cellular membranes and leaking out their nutrients, just like pricking a hole in a balloon," he said. "Our nanotubes could also act in this manner, but in addition, they have the ability to lure the bacteria with a bait that guides them to the cell membrane where they can start destroying the cell."

Further exploitation of the tubes’ dial-up properties could lead to nanotubes that conduct electricity or photons, making them useful in computer memory systems, high-definition displays, biosensors and drug delivery systems. Fenniri is hopeful the findings will prove beneficial in many fields.

"Nanotechnology relies on our ability to control the behavior of matter at the molecular scale," he said. "The versatility and robustness of our system is already pointing the way towards numerous applications in a fairly broad range of disciplines. It should help nanotubes on their way to becoming the nanoworld’s jack-of-all-trades."

Funding for this research is provided by grants from the National Science Foundation and the American Chemical Society, awards from 3M and the Research Corp., and by Purdue University.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Hicham Fenniri, (765) 494-5241, hf@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | EurekAlert!
Further information:
http://www.chem.purdue.edu/hf
http://www.chem.purdue.edu/plcn
http://www.ecn.purdue.edu/NANO/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>