Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at TSRI identify thousands of proteins associated with deadliest form of malaria

04.10.2002


Two scientists at The Scripps Research Institute (TSRI) led a collaborative effort involving 18 researchers at half a dozen laboratories in the United States and Great Britain to determine the "proteome" of the most deadly form of the malaria pathogen - Plasmodium falciparum.

This study, in the current issue of the journal Nature, accompanies an article detailing the completion of a major six-year $17.9-million genome-sequencing effort involving 185 researchers from the United Kingdom, the United States, and Australia that sequenced the entire Plasmodium falciparum genome.

"This is the first instance that I know of where these proteomics studies have gone along side-by-side with the genome sequencing project," says TSRI Cell Biology Professor John Yates, Ph.D, who was the lead scientist involved in the proteomics effort, which identified the proteins in the single-celled Plasmodium that cause malaria.



These efforts will pay huge dividends in global healthcare if even a few of the newly identified proteins lead to the development of new malaria vaccines--and Yates and his colleagues found a total of more than 2,400 proteins.

"We don’t exactly know the function of well over half of the proteins identified--we just know that they are there," says Laurence Florens, Ph.D., who is a research associate at TSRI and the lead author of the study.

Malaria is a nasty and often fatal disease, which may lead to kidney failure, seizures, permanent neurological damage, coma, and death. There are four types of Plasmodium parasites that cause the disease, of which falciparum is the most deadly. (See Supplemental Information: Malaria.)

Knowing which proteins are expressed by Plasmodium falciparum should help scientists understand how the pathogen causes malaria and, with luck, how to thwart it. That was the goal of the proteomics approach taken by Florens and Yates.

Where "genomics" maps the DNA sequence and genes in an organism like Plasmodium falciparum, "proteomics" adds the topographical information to that map by identifying which genes are actually expressed as proteins in the Plasmodium falciparum cells.

More importantly, Florens and Yates also sought to identify which proteins are expressed at which stages of the organism’s lifecycle. This was no small task. Plasmodium falciparum has at least ten distinct stages in its lifecycle, and there is no way of telling which are expressed at each distinct stage of the pathogen’s lifecycle simply by looking at the genes.

But Florens and Yates were able to figure out which proteins were expressed during four different stages (sporozoites, merozoites, trophozoites, and gametocytes) and, thus, which might make good vaccine targets.

Mass Spectrometry and Malaria

The process was basically to take samples of a single isolate of Plasmodium falciparum and grow three of the four different stages in blood in a way that allowed samples to be purified. The fourth stage, the sporozoites, had to be hand-dissected from mosquito salivary glands.

In purifying the samples, Yates and Florens first separated the soluble proteins from the membrane-bound proteins, then digested them (chopped into smaller "peptide" pieces with enzymes), and resolved them using liquid chromatography combined with tandem mass spectrometry.

The instrument detects the pieces and uses sophisticated software that Yates and his colleagues developed previously to search a database of predicted genes to reconstruct most of the proteins in the sample. This technique was particularly useful in this context because it allowed a very large background "noise" of mosquito and human proteins to be subtracted out. The peptides that come from the Plasmodium can be distinguished from those that come from the mosquito or the human.

Furthermore, using the technique, Florens and Yates were able to show not only which genes were expressed in each stage of the Plasmodium falciparum life cycle, but which proteins were membrane-associated, and which were inside the cell--important pieces of information for vaccine design.

One unexpected finding was that a lot of the proteins that were expressed in particular stages "co-localized" in chromosomal gene clusters possibly under the control of common regulatory elements.

Promoters are regions of DNA in front of a gene that "turn on" that gene like a switch and cause it to be expressed as protein. Normally, any given gene will have its own promoter. But Florens and Yates found many different clusters of genes that become expressed together and might be under the control of a single promoter. Florens and Yates believe that this is one of the ways that the pathogen is able to thrive in two different organisms (mosquitoes and humans).

"The switching between stages is something that happens very fast," says Florens, "and [the pathogen] needs a mechanism to express many genes quickly."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>