Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at TSRI identify thousands of proteins associated with deadliest form of malaria

04.10.2002


Two scientists at The Scripps Research Institute (TSRI) led a collaborative effort involving 18 researchers at half a dozen laboratories in the United States and Great Britain to determine the "proteome" of the most deadly form of the malaria pathogen - Plasmodium falciparum.

This study, in the current issue of the journal Nature, accompanies an article detailing the completion of a major six-year $17.9-million genome-sequencing effort involving 185 researchers from the United Kingdom, the United States, and Australia that sequenced the entire Plasmodium falciparum genome.

"This is the first instance that I know of where these proteomics studies have gone along side-by-side with the genome sequencing project," says TSRI Cell Biology Professor John Yates, Ph.D, who was the lead scientist involved in the proteomics effort, which identified the proteins in the single-celled Plasmodium that cause malaria.



These efforts will pay huge dividends in global healthcare if even a few of the newly identified proteins lead to the development of new malaria vaccines--and Yates and his colleagues found a total of more than 2,400 proteins.

"We don’t exactly know the function of well over half of the proteins identified--we just know that they are there," says Laurence Florens, Ph.D., who is a research associate at TSRI and the lead author of the study.

Malaria is a nasty and often fatal disease, which may lead to kidney failure, seizures, permanent neurological damage, coma, and death. There are four types of Plasmodium parasites that cause the disease, of which falciparum is the most deadly. (See Supplemental Information: Malaria.)

Knowing which proteins are expressed by Plasmodium falciparum should help scientists understand how the pathogen causes malaria and, with luck, how to thwart it. That was the goal of the proteomics approach taken by Florens and Yates.

Where "genomics" maps the DNA sequence and genes in an organism like Plasmodium falciparum, "proteomics" adds the topographical information to that map by identifying which genes are actually expressed as proteins in the Plasmodium falciparum cells.

More importantly, Florens and Yates also sought to identify which proteins are expressed at which stages of the organism’s lifecycle. This was no small task. Plasmodium falciparum has at least ten distinct stages in its lifecycle, and there is no way of telling which are expressed at each distinct stage of the pathogen’s lifecycle simply by looking at the genes.

But Florens and Yates were able to figure out which proteins were expressed during four different stages (sporozoites, merozoites, trophozoites, and gametocytes) and, thus, which might make good vaccine targets.

Mass Spectrometry and Malaria

The process was basically to take samples of a single isolate of Plasmodium falciparum and grow three of the four different stages in blood in a way that allowed samples to be purified. The fourth stage, the sporozoites, had to be hand-dissected from mosquito salivary glands.

In purifying the samples, Yates and Florens first separated the soluble proteins from the membrane-bound proteins, then digested them (chopped into smaller "peptide" pieces with enzymes), and resolved them using liquid chromatography combined with tandem mass spectrometry.

The instrument detects the pieces and uses sophisticated software that Yates and his colleagues developed previously to search a database of predicted genes to reconstruct most of the proteins in the sample. This technique was particularly useful in this context because it allowed a very large background "noise" of mosquito and human proteins to be subtracted out. The peptides that come from the Plasmodium can be distinguished from those that come from the mosquito or the human.

Furthermore, using the technique, Florens and Yates were able to show not only which genes were expressed in each stage of the Plasmodium falciparum life cycle, but which proteins were membrane-associated, and which were inside the cell--important pieces of information for vaccine design.

One unexpected finding was that a lot of the proteins that were expressed in particular stages "co-localized" in chromosomal gene clusters possibly under the control of common regulatory elements.

Promoters are regions of DNA in front of a gene that "turn on" that gene like a switch and cause it to be expressed as protein. Normally, any given gene will have its own promoter. But Florens and Yates found many different clusters of genes that become expressed together and might be under the control of a single promoter. Florens and Yates believe that this is one of the ways that the pathogen is able to thrive in two different organisms (mosquitoes and humans).

"The switching between stages is something that happens very fast," says Florens, "and [the pathogen] needs a mechanism to express many genes quickly."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>