Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solexa Announces Progress in its Single Molecule Array Technology at BioArrays Europe Conference

01.10.2002


Speaking at BioArrays Europe (Cambridge, UK, 30 Sept-1 Oct), Dr Tony Smith, Chief Technology Officer (CTO) of Solexa, presented data on the progress of the Company`s proprietary Single Molecule Array™ technology for human genetic variation applications, highlighting significant progress in the massively parallel detection of single molecules using fluorescence.



Solexa’s Single Molecule Array technology is being applied to the measurement of individual genetic variation to develop a method for complete personal genome sequencing called TotalGenotyping™. The Company’s technical approach combines proprietary advances in synthetic chemistry, surface chemistry, molecular biology, enzymology, array technology, optics, and informatics. The aim is to offer a potential five order of magnitude efficiency improvement, well beyond the range possible from existing technologies.

Commenting on their progress Dr Tony Smith said: “The progress we have made in the massively parallel detection of single molecules using fluorescence is a fundamental step forward in applying our Single Molecule Array technology towards a full working prototype. These discoveries take the company one step further towards its ultimate goal of ‘the thousand dollar genome’.”


Unlike conventional high-density arrays, Single Molecule Arrays are unaddressed and monodispersed: the sites on the surface are randomly distributed and at each there is only one single molecule (a fragment of DNA in the case of the sequencing application). Because there is only a single molecule at each site, it is possible to create arrays of very high site density, around 108 sites per cm2 or more, allowing massively parallel processing. By working at the single molecule level, Solexa’s method also avoids the need for amplification of target sequence, allowing ‘one-pot’ sample preparation for a whole genome analysis. It is the combination of these two features of ultra-high site density and amplification-free, one-pot sample preparation that creates the breakthrough in economics and throughput.

Solexa’s goal is to determine individual sequence variation compared to a reference sequence, rather than de novo sequencing. Solexa is currently developing a proprietary sequencing chemistry, SmaSeq™, that is compatible with its Single Molecule Arrays, and is also developing a proprietary bioinformatics system that aligns the sequencing output reads in the context of a reference system.

Solexa intends to use the massively parallel character of its technology to enable measurement of virtually all variation in a sample sequence. Its technology makes it significantly more economical to measure all variation in a sample rather than to select any large subset for analysis. Given the highly significant value of the additional information generated by TotalGenotyping, this is an extremely compelling approach.

To reach full working prototype, Solexa scientists will work on the integration of the various components of its technology into a sequencing system over the next 12 months.

Caroline Stupnicka | alfa
Further information:
http://www.solexa.com

More articles from Life Sciences:

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>