Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solexa Announces Progress in its Single Molecule Array Technology at BioArrays Europe Conference

01.10.2002


Speaking at BioArrays Europe (Cambridge, UK, 30 Sept-1 Oct), Dr Tony Smith, Chief Technology Officer (CTO) of Solexa, presented data on the progress of the Company`s proprietary Single Molecule Array™ technology for human genetic variation applications, highlighting significant progress in the massively parallel detection of single molecules using fluorescence.



Solexa’s Single Molecule Array technology is being applied to the measurement of individual genetic variation to develop a method for complete personal genome sequencing called TotalGenotyping™. The Company’s technical approach combines proprietary advances in synthetic chemistry, surface chemistry, molecular biology, enzymology, array technology, optics, and informatics. The aim is to offer a potential five order of magnitude efficiency improvement, well beyond the range possible from existing technologies.

Commenting on their progress Dr Tony Smith said: “The progress we have made in the massively parallel detection of single molecules using fluorescence is a fundamental step forward in applying our Single Molecule Array technology towards a full working prototype. These discoveries take the company one step further towards its ultimate goal of ‘the thousand dollar genome’.”


Unlike conventional high-density arrays, Single Molecule Arrays are unaddressed and monodispersed: the sites on the surface are randomly distributed and at each there is only one single molecule (a fragment of DNA in the case of the sequencing application). Because there is only a single molecule at each site, it is possible to create arrays of very high site density, around 108 sites per cm2 or more, allowing massively parallel processing. By working at the single molecule level, Solexa’s method also avoids the need for amplification of target sequence, allowing ‘one-pot’ sample preparation for a whole genome analysis. It is the combination of these two features of ultra-high site density and amplification-free, one-pot sample preparation that creates the breakthrough in economics and throughput.

Solexa’s goal is to determine individual sequence variation compared to a reference sequence, rather than de novo sequencing. Solexa is currently developing a proprietary sequencing chemistry, SmaSeq™, that is compatible with its Single Molecule Arrays, and is also developing a proprietary bioinformatics system that aligns the sequencing output reads in the context of a reference system.

Solexa intends to use the massively parallel character of its technology to enable measurement of virtually all variation in a sample sequence. Its technology makes it significantly more economical to measure all variation in a sample rather than to select any large subset for analysis. Given the highly significant value of the additional information generated by TotalGenotyping, this is an extremely compelling approach.

To reach full working prototype, Solexa scientists will work on the integration of the various components of its technology into a sequencing system over the next 12 months.

Caroline Stupnicka | alfa
Further information:
http://www.solexa.com

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>