Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solexa Announces Progress in its Single Molecule Array Technology at BioArrays Europe Conference

01.10.2002


Speaking at BioArrays Europe (Cambridge, UK, 30 Sept-1 Oct), Dr Tony Smith, Chief Technology Officer (CTO) of Solexa, presented data on the progress of the Company`s proprietary Single Molecule Array™ technology for human genetic variation applications, highlighting significant progress in the massively parallel detection of single molecules using fluorescence.



Solexa’s Single Molecule Array technology is being applied to the measurement of individual genetic variation to develop a method for complete personal genome sequencing called TotalGenotyping™. The Company’s technical approach combines proprietary advances in synthetic chemistry, surface chemistry, molecular biology, enzymology, array technology, optics, and informatics. The aim is to offer a potential five order of magnitude efficiency improvement, well beyond the range possible from existing technologies.

Commenting on their progress Dr Tony Smith said: “The progress we have made in the massively parallel detection of single molecules using fluorescence is a fundamental step forward in applying our Single Molecule Array technology towards a full working prototype. These discoveries take the company one step further towards its ultimate goal of ‘the thousand dollar genome’.”


Unlike conventional high-density arrays, Single Molecule Arrays are unaddressed and monodispersed: the sites on the surface are randomly distributed and at each there is only one single molecule (a fragment of DNA in the case of the sequencing application). Because there is only a single molecule at each site, it is possible to create arrays of very high site density, around 108 sites per cm2 or more, allowing massively parallel processing. By working at the single molecule level, Solexa’s method also avoids the need for amplification of target sequence, allowing ‘one-pot’ sample preparation for a whole genome analysis. It is the combination of these two features of ultra-high site density and amplification-free, one-pot sample preparation that creates the breakthrough in economics and throughput.

Solexa’s goal is to determine individual sequence variation compared to a reference sequence, rather than de novo sequencing. Solexa is currently developing a proprietary sequencing chemistry, SmaSeq™, that is compatible with its Single Molecule Arrays, and is also developing a proprietary bioinformatics system that aligns the sequencing output reads in the context of a reference system.

Solexa intends to use the massively parallel character of its technology to enable measurement of virtually all variation in a sample sequence. Its technology makes it significantly more economical to measure all variation in a sample rather than to select any large subset for analysis. Given the highly significant value of the additional information generated by TotalGenotyping, this is an extremely compelling approach.

To reach full working prototype, Solexa scientists will work on the integration of the various components of its technology into a sequencing system over the next 12 months.

Caroline Stupnicka | alfa
Further information:
http://www.solexa.com

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>