Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solexa Announces Progress in its Single Molecule Array Technology at BioArrays Europe Conference

01.10.2002


Speaking at BioArrays Europe (Cambridge, UK, 30 Sept-1 Oct), Dr Tony Smith, Chief Technology Officer (CTO) of Solexa, presented data on the progress of the Company`s proprietary Single Molecule Array™ technology for human genetic variation applications, highlighting significant progress in the massively parallel detection of single molecules using fluorescence.



Solexa’s Single Molecule Array technology is being applied to the measurement of individual genetic variation to develop a method for complete personal genome sequencing called TotalGenotyping™. The Company’s technical approach combines proprietary advances in synthetic chemistry, surface chemistry, molecular biology, enzymology, array technology, optics, and informatics. The aim is to offer a potential five order of magnitude efficiency improvement, well beyond the range possible from existing technologies.

Commenting on their progress Dr Tony Smith said: “The progress we have made in the massively parallel detection of single molecules using fluorescence is a fundamental step forward in applying our Single Molecule Array technology towards a full working prototype. These discoveries take the company one step further towards its ultimate goal of ‘the thousand dollar genome’.”


Unlike conventional high-density arrays, Single Molecule Arrays are unaddressed and monodispersed: the sites on the surface are randomly distributed and at each there is only one single molecule (a fragment of DNA in the case of the sequencing application). Because there is only a single molecule at each site, it is possible to create arrays of very high site density, around 108 sites per cm2 or more, allowing massively parallel processing. By working at the single molecule level, Solexa’s method also avoids the need for amplification of target sequence, allowing ‘one-pot’ sample preparation for a whole genome analysis. It is the combination of these two features of ultra-high site density and amplification-free, one-pot sample preparation that creates the breakthrough in economics and throughput.

Solexa’s goal is to determine individual sequence variation compared to a reference sequence, rather than de novo sequencing. Solexa is currently developing a proprietary sequencing chemistry, SmaSeq™, that is compatible with its Single Molecule Arrays, and is also developing a proprietary bioinformatics system that aligns the sequencing output reads in the context of a reference system.

Solexa intends to use the massively parallel character of its technology to enable measurement of virtually all variation in a sample sequence. Its technology makes it significantly more economical to measure all variation in a sample rather than to select any large subset for analysis. Given the highly significant value of the additional information generated by TotalGenotyping, this is an extremely compelling approach.

To reach full working prototype, Solexa scientists will work on the integration of the various components of its technology into a sequencing system over the next 12 months.

Caroline Stupnicka | alfa
Further information:
http://www.solexa.com

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>