Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover role for c-myc gene in tumor angiogenesis

01.10.2002


The c-myc gene is commonly activated in a variety of human tumors. As a new report in the October 1 issue of Genes & Development shows, scientists are gaining a better understanding as to why.



Dr. John Cleveland and colleagues at St. Jude Children’s Research Hospital have discovered that c-Myc is essential for tumor development, as it regulates factors necessary for the growth of blood vessels into tumors – lending a new potential target to anti-angiogenic cancer therapies.

The myc family of oncogenes (c-myc, N-myc, and L-myc) function in the control of cell proliferation, differentiation, and tumorigenesis. Although it has long been recognized that c-Myc’s positive effect on cell proliferation can contribute to cancer development, scientists have also suspected that c-Myc has additional roles in the progression of malignancy. Dr. Cleveland and colleagues have discovered such a role: c-Myc is essential for tumor angiogenesis.


Growing tumors need oxygen and nutrients to survive. Once a tumor’s demand for oxygen and nutrients exceeds what the existing vasculature can provide, a new vascular network is established (vasculogenesis) and capillaries are formed (angiogenesis) to meet the tumor’s increasing needs. Since the late nineties, when the first anti-angiogenic drugs entered clinical trials, much interest has centered upon the therapeutic approach to thwart a tumor’s growth by cutting off its blood supply. By showing that c-Myc is essential for promoting vasculo- and angiogenesis, Dr. Cleveland and colleagues have uncovered another possible route in this anti-angiogenic strategy.

"The goal of this study was to determine the role of c-Myc in development. These studies established that c-Myc is essential for the formation of the vasculature that distributes blood throughout the organism, and that it did so by functioning as a master regulator of factors that are necessary for the growth of blood vessels and capillaries. The surprising result was that these studies also revealed why MYC family genes are activated in 70% of all human cancers," explains Dr. Cleveland.

To evaluate the physiological role of c-Myc, Dr. Cleveland and colleagues re-derived a strain of transgenic mice that are deficient in the gene. The c-myc-deficient mice die as embryos due to cardiac and neural defects, but also display marked defects in vasculogenesis, angiogenesis, and the formation of red blood cells. The researchers found that the vascular defects in the c-Myc-deficient mice arise from the mis-expression of intercellular signals that coordinate vasculo- and angiogenesis during development.

Drs. Cleveland and Baudino and colleagues went on to show that c-Myc plays a similar role in orchestrating vasculogenesis during tumor formation. The researchers demonstrated that c-Myc-deficient embryonic stem cells have a diminished ability to form tumors in immunocompromised mice, and that the small tumors that sometimes form have dramatically less vasculature. Further delineation of role of c-Myc in promoting human tumorigenesis is needed, but as it stands, this study presents strong evidence to suggest that the disruption of c-Myc may prove successful as an anti-angiogenic tool in cancer therapy.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>