Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover role for c-myc gene in tumor angiogenesis

01.10.2002


The c-myc gene is commonly activated in a variety of human tumors. As a new report in the October 1 issue of Genes & Development shows, scientists are gaining a better understanding as to why.



Dr. John Cleveland and colleagues at St. Jude Children’s Research Hospital have discovered that c-Myc is essential for tumor development, as it regulates factors necessary for the growth of blood vessels into tumors – lending a new potential target to anti-angiogenic cancer therapies.

The myc family of oncogenes (c-myc, N-myc, and L-myc) function in the control of cell proliferation, differentiation, and tumorigenesis. Although it has long been recognized that c-Myc’s positive effect on cell proliferation can contribute to cancer development, scientists have also suspected that c-Myc has additional roles in the progression of malignancy. Dr. Cleveland and colleagues have discovered such a role: c-Myc is essential for tumor angiogenesis.


Growing tumors need oxygen and nutrients to survive. Once a tumor’s demand for oxygen and nutrients exceeds what the existing vasculature can provide, a new vascular network is established (vasculogenesis) and capillaries are formed (angiogenesis) to meet the tumor’s increasing needs. Since the late nineties, when the first anti-angiogenic drugs entered clinical trials, much interest has centered upon the therapeutic approach to thwart a tumor’s growth by cutting off its blood supply. By showing that c-Myc is essential for promoting vasculo- and angiogenesis, Dr. Cleveland and colleagues have uncovered another possible route in this anti-angiogenic strategy.

"The goal of this study was to determine the role of c-Myc in development. These studies established that c-Myc is essential for the formation of the vasculature that distributes blood throughout the organism, and that it did so by functioning as a master regulator of factors that are necessary for the growth of blood vessels and capillaries. The surprising result was that these studies also revealed why MYC family genes are activated in 70% of all human cancers," explains Dr. Cleveland.

To evaluate the physiological role of c-Myc, Dr. Cleveland and colleagues re-derived a strain of transgenic mice that are deficient in the gene. The c-myc-deficient mice die as embryos due to cardiac and neural defects, but also display marked defects in vasculogenesis, angiogenesis, and the formation of red blood cells. The researchers found that the vascular defects in the c-Myc-deficient mice arise from the mis-expression of intercellular signals that coordinate vasculo- and angiogenesis during development.

Drs. Cleveland and Baudino and colleagues went on to show that c-Myc plays a similar role in orchestrating vasculogenesis during tumor formation. The researchers demonstrated that c-Myc-deficient embryonic stem cells have a diminished ability to form tumors in immunocompromised mice, and that the small tumors that sometimes form have dramatically less vasculature. Further delineation of role of c-Myc in promoting human tumorigenesis is needed, but as it stands, this study presents strong evidence to suggest that the disruption of c-Myc may prove successful as an anti-angiogenic tool in cancer therapy.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>