Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Chemist Creates Structure in Amorphous Materials

27.09.2002


A chemist at North Carolina State University has made breakthrough discoveries that advance basic understandings of the nature of liquids and glasses at the atomic and molecular levels. Featured in the Sept. 26 issue of Nature, these discoveries could lead to the development of totally new materials with useful optical and electronic properties - as well as applications not yet foreseen.


Dr. James Martin uses colorful analogies to explain his current research



Liquids and glass have long been understood by scientists to be amorphous, meaning "without structure." Cartoon pictures in textbooks of atomic arrangements frequently represent liquids to be much like gases, a collection of molecules moving around randomly.

Not so, according to Dr. James D. Martin, associate professor of chemistry at NC State. "Just as a symphony is much more than a collection of random notes, the atoms and molecules in a liquid are quite organized - more like those in a crystal than a gas."


With this new understanding of liquid molecular organization comes the ability to reorganize liquids.

Martin and his colleagues have discovered the chemical principles that allow them to essentially write new "symphonic compositions" in amorphous materials. They have designed the compositions and structure of several glasses and liquids, then gone into the laboratory and made them.

Due to this new ability to design such structures, it will be possible to engineer specific optical and electronic properties of glasses and liquids. This amorphous-material engineering creates the materials foundation for future technologies.

What led to this important discovery? Martin specializes in the structure and physical properties of inorganic materials. His work involves engineering crystals to produce materials with desired properties.

Several years ago, Martin noticed that as he designed and synthesized crystals, he also produced a lot of liquid and glassy blobs. He originally dismissed the blobs as trash, but became curious about them because they appeared so frequently. His curiosity led him into the study of the molecular structure of liquids and glasses, an area not well understood by science.

The first hint of the presence of structure in liquids emerged in 1916, as scientists experimented with the X-ray diffraction of liquids. They observed structural features indicating some organization of molecules, but the organization was far less than is necessary for a crystal. Since that initial discovery, there has been significant scientific debate about whether the structure in liquids is crystal-like or random.

Upon melting into a liquid, most solids undergo a very small change in volume, suggesting that the interactions holding molecules together in liquids, glasses and crystals are quite similar.

Despite these clues, scientists still have only a limited knowledge about the structure of liquids and glasses. In a typical freshman chemistry textbook, there are multiple pages on gases and solids, yet only a paragraph or two on liquids.

"That’s the mystery. What is the structure of something that’s not supposed
to have a structure?" Martin said. "If similar bonding interactions hold molecules in liquids, glasses and crystals, then it should be possible to engineer the structure in liquids and glasses just like it’s possible to engineer the structure of crystals."

An analogy occurred to him as Martin stared at the crystal models he’d made by gluing tennis balls together, and then watched his children "swim" through big playpens filled with plastic balls. "Picture the balls as molecules," Martin said. "No matter how kids may move around in the playpen, the balls always touch each other in about the same way. And the arrangement of the balls looks very much like my tennis-ball crystal models."

This new understanding of the structure of liquids and glasses suggests the possibility of engineering new liquids and glasses. "If you understand the network’s structure, and the chemical bonds within the structure, you can manipulate the structure," said Martin. "And if you change the structure, you change the properties."

In his laboratories at NC State, Martin and graduate student Steve Goettler have proven this by introducing molecules of a different substance into glasses and liquids. The foreign molecules are engineered at the atomic level to "fit" within the liquid’s structure and interact with the liquid’s own molecules. The presence of the foreign molecules changes the liquid’s properties. Different concentrations of the foreign molecules also change the structure, and thus produce more changes in the liquid’s properties.

To prove the structural relationships between their amorphous materials and model crystal structures, Martin’s research group took their engineered liquids and glasses to Argonne National Laboratory. There they are able to look at the atomic organization of their materials using a glass, liquids and amorphous materials diffractometer (GLAD) instrument at Argonne’s national user facility.

Martin’s work, funded by the National Science Foundation, opens a new area of scientific research: amorphous materials engineering. He foresees the ability to control the optical and electronic properties of glasses to produce specialized materials that will advance optical computing and communications technologies, among other applications. "This new understanding," he said, "allows us to create the materials that will be the foundation of tomorrow’s technology."

At the very least, someone will have to rewrite a lot of chemistry textbooks.

Dr. James D. Martin | EurekAlert!
Further information:
http://www.ncsu.edu/

More articles from Life Sciences:

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

nachricht Beer can lift your spirits
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Bacterial Nanosized Speargun Works Like a Power Drill

26.09.2017 | Life Sciences

The fastest light-driven current source

26.09.2017 | Physics and Astronomy

Beer can lift your spirits

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>