Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic molecular sieve binds water better than zeolites

24.09.2002


Zeolites are an extremely important class of inorganic materials that can separate gases or liquids on the basis of molecular size and shape. The backbone of a billion-dollar-a-year industry, these molecular sieves are used in numerous applications, from the production of biodegradable detergents, to the removal of moisture from natural gas pipelines, to the catalytic cracking of heavy petroleum distillates into gasoline.



Now, chemist Kenneth S. Suslick and colleagues at the University of Illinois at Urbana-Champaign have created a new class of materials that are like zeolites in many ways. These new molecular solids are more than 50 percent empty space ­ space that can trap molecules of the right size and shape, including water. The scientists report their discovery in a paper that has been accepted for publication in the journal Nature Materials, and posted on its Web site www.nature.com/materials.

"This organic zeolite analogue binds water faster and more strongly than the best drying agents and has a higher capacity for storing water," said Suslick, a William H. and Janet Lycan Professor of Chemistry at Illinois. "The material also shows shape selectivity, permitting only a narrow range of molecules to enter."


A naturally occurring mineral consisting of aluminum and silicon, zeolites were discovered in the Middle Ages. At the time, the properties of a material were tested by heating it with a blowpipe. When this material was heated, boiling water was released. The name zeolite is derived from Greek words meaning "boiling stone."

The ability to make other kinds of molecular sieves has been a major goal in materials chemistry. That goal has been frustrated, however, because most solids are not porous to begin with, and the process of generating pores causes most materials to collapse.

To build robust nanoporous solids that are not based on silica and alumina, the researchers used much larger molecular building blocks called metalloporphyrins ­ doughnut-shaped molecules that bind metal atoms in the middle hole. Metalloporphyrins are closely related to hemoglobin (the red pigment in blood) and chlorophyll (the green pigment in plants).

By heating a mixture of a special porphyrin acid and cobalt chloride to 200 degrees Celsius, Suslick and his colleagues created a compound called PIZA-1 (Porphyrinic Illinois Zeolite Analogue #1).

"PIZA-1 demonstrated remarkable properties as a synthetic molecular sieve for removing water from common organic solvents," Suslick said. "In addition, because the metalloporphyrin has a metal in the middle that can be catalytically active, the potential exists to make shape-selective catalysts for specific purposes. Not only can we selectively absorb molecules into the solid, we can also make the trapped molecules undergo chemical reactions ­ such as the catalytic oxidation of fuels."

Catalytic reactions that would convert the hydrocarbons in gasoline into the chemicals that react to make polymers such as nylon are not yet possible to achieve, Suslick said. "But the ability to use fossil fuels as chemical feedstocks, rather than just burning them, is a technology that will become very important this century."

Collaborators on the project were graduate student Margaret Kosal (now at Chem Sensing), postdoctoral researcher Jun-Hong Chou (now at Dupont), and X-ray crystallographer Scott Wilson. The National Institutes of Health and the U.S. Department of Energy funded the work.

James E. Kloeppel | News Bureau, UIUC
Further information:
http://www.news.uiuc.edu/scitips/02/0923sieve.html

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>