Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic molecular sieve binds water better than zeolites

24.09.2002


Zeolites are an extremely important class of inorganic materials that can separate gases or liquids on the basis of molecular size and shape. The backbone of a billion-dollar-a-year industry, these molecular sieves are used in numerous applications, from the production of biodegradable detergents, to the removal of moisture from natural gas pipelines, to the catalytic cracking of heavy petroleum distillates into gasoline.



Now, chemist Kenneth S. Suslick and colleagues at the University of Illinois at Urbana-Champaign have created a new class of materials that are like zeolites in many ways. These new molecular solids are more than 50 percent empty space ­ space that can trap molecules of the right size and shape, including water. The scientists report their discovery in a paper that has been accepted for publication in the journal Nature Materials, and posted on its Web site www.nature.com/materials.

"This organic zeolite analogue binds water faster and more strongly than the best drying agents and has a higher capacity for storing water," said Suslick, a William H. and Janet Lycan Professor of Chemistry at Illinois. "The material also shows shape selectivity, permitting only a narrow range of molecules to enter."


A naturally occurring mineral consisting of aluminum and silicon, zeolites were discovered in the Middle Ages. At the time, the properties of a material were tested by heating it with a blowpipe. When this material was heated, boiling water was released. The name zeolite is derived from Greek words meaning "boiling stone."

The ability to make other kinds of molecular sieves has been a major goal in materials chemistry. That goal has been frustrated, however, because most solids are not porous to begin with, and the process of generating pores causes most materials to collapse.

To build robust nanoporous solids that are not based on silica and alumina, the researchers used much larger molecular building blocks called metalloporphyrins ­ doughnut-shaped molecules that bind metal atoms in the middle hole. Metalloporphyrins are closely related to hemoglobin (the red pigment in blood) and chlorophyll (the green pigment in plants).

By heating a mixture of a special porphyrin acid and cobalt chloride to 200 degrees Celsius, Suslick and his colleagues created a compound called PIZA-1 (Porphyrinic Illinois Zeolite Analogue #1).

"PIZA-1 demonstrated remarkable properties as a synthetic molecular sieve for removing water from common organic solvents," Suslick said. "In addition, because the metalloporphyrin has a metal in the middle that can be catalytically active, the potential exists to make shape-selective catalysts for specific purposes. Not only can we selectively absorb molecules into the solid, we can also make the trapped molecules undergo chemical reactions ­ such as the catalytic oxidation of fuels."

Catalytic reactions that would convert the hydrocarbons in gasoline into the chemicals that react to make polymers such as nylon are not yet possible to achieve, Suslick said. "But the ability to use fossil fuels as chemical feedstocks, rather than just burning them, is a technology that will become very important this century."

Collaborators on the project were graduate student Margaret Kosal (now at Chem Sensing), postdoctoral researcher Jun-Hong Chou (now at Dupont), and X-ray crystallographer Scott Wilson. The National Institutes of Health and the U.S. Department of Energy funded the work.

James E. Kloeppel | News Bureau, UIUC
Further information:
http://www.news.uiuc.edu/scitips/02/0923sieve.html

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>