Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic molecular sieve binds water better than zeolites

24.09.2002


Zeolites are an extremely important class of inorganic materials that can separate gases or liquids on the basis of molecular size and shape. The backbone of a billion-dollar-a-year industry, these molecular sieves are used in numerous applications, from the production of biodegradable detergents, to the removal of moisture from natural gas pipelines, to the catalytic cracking of heavy petroleum distillates into gasoline.



Now, chemist Kenneth S. Suslick and colleagues at the University of Illinois at Urbana-Champaign have created a new class of materials that are like zeolites in many ways. These new molecular solids are more than 50 percent empty space ­ space that can trap molecules of the right size and shape, including water. The scientists report their discovery in a paper that has been accepted for publication in the journal Nature Materials, and posted on its Web site www.nature.com/materials.

"This organic zeolite analogue binds water faster and more strongly than the best drying agents and has a higher capacity for storing water," said Suslick, a William H. and Janet Lycan Professor of Chemistry at Illinois. "The material also shows shape selectivity, permitting only a narrow range of molecules to enter."


A naturally occurring mineral consisting of aluminum and silicon, zeolites were discovered in the Middle Ages. At the time, the properties of a material were tested by heating it with a blowpipe. When this material was heated, boiling water was released. The name zeolite is derived from Greek words meaning "boiling stone."

The ability to make other kinds of molecular sieves has been a major goal in materials chemistry. That goal has been frustrated, however, because most solids are not porous to begin with, and the process of generating pores causes most materials to collapse.

To build robust nanoporous solids that are not based on silica and alumina, the researchers used much larger molecular building blocks called metalloporphyrins ­ doughnut-shaped molecules that bind metal atoms in the middle hole. Metalloporphyrins are closely related to hemoglobin (the red pigment in blood) and chlorophyll (the green pigment in plants).

By heating a mixture of a special porphyrin acid and cobalt chloride to 200 degrees Celsius, Suslick and his colleagues created a compound called PIZA-1 (Porphyrinic Illinois Zeolite Analogue #1).

"PIZA-1 demonstrated remarkable properties as a synthetic molecular sieve for removing water from common organic solvents," Suslick said. "In addition, because the metalloporphyrin has a metal in the middle that can be catalytically active, the potential exists to make shape-selective catalysts for specific purposes. Not only can we selectively absorb molecules into the solid, we can also make the trapped molecules undergo chemical reactions ­ such as the catalytic oxidation of fuels."

Catalytic reactions that would convert the hydrocarbons in gasoline into the chemicals that react to make polymers such as nylon are not yet possible to achieve, Suslick said. "But the ability to use fossil fuels as chemical feedstocks, rather than just burning them, is a technology that will become very important this century."

Collaborators on the project were graduate student Margaret Kosal (now at Chem Sensing), postdoctoral researcher Jun-Hong Chou (now at Dupont), and X-ray crystallographer Scott Wilson. The National Institutes of Health and the U.S. Department of Energy funded the work.

James E. Kloeppel | News Bureau, UIUC
Further information:
http://www.news.uiuc.edu/scitips/02/0923sieve.html

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>