Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic molecular sieve binds water better than zeolites

24.09.2002


Zeolites are an extremely important class of inorganic materials that can separate gases or liquids on the basis of molecular size and shape. The backbone of a billion-dollar-a-year industry, these molecular sieves are used in numerous applications, from the production of biodegradable detergents, to the removal of moisture from natural gas pipelines, to the catalytic cracking of heavy petroleum distillates into gasoline.



Now, chemist Kenneth S. Suslick and colleagues at the University of Illinois at Urbana-Champaign have created a new class of materials that are like zeolites in many ways. These new molecular solids are more than 50 percent empty space ­ space that can trap molecules of the right size and shape, including water. The scientists report their discovery in a paper that has been accepted for publication in the journal Nature Materials, and posted on its Web site www.nature.com/materials.

"This organic zeolite analogue binds water faster and more strongly than the best drying agents and has a higher capacity for storing water," said Suslick, a William H. and Janet Lycan Professor of Chemistry at Illinois. "The material also shows shape selectivity, permitting only a narrow range of molecules to enter."


A naturally occurring mineral consisting of aluminum and silicon, zeolites were discovered in the Middle Ages. At the time, the properties of a material were tested by heating it with a blowpipe. When this material was heated, boiling water was released. The name zeolite is derived from Greek words meaning "boiling stone."

The ability to make other kinds of molecular sieves has been a major goal in materials chemistry. That goal has been frustrated, however, because most solids are not porous to begin with, and the process of generating pores causes most materials to collapse.

To build robust nanoporous solids that are not based on silica and alumina, the researchers used much larger molecular building blocks called metalloporphyrins ­ doughnut-shaped molecules that bind metal atoms in the middle hole. Metalloporphyrins are closely related to hemoglobin (the red pigment in blood) and chlorophyll (the green pigment in plants).

By heating a mixture of a special porphyrin acid and cobalt chloride to 200 degrees Celsius, Suslick and his colleagues created a compound called PIZA-1 (Porphyrinic Illinois Zeolite Analogue #1).

"PIZA-1 demonstrated remarkable properties as a synthetic molecular sieve for removing water from common organic solvents," Suslick said. "In addition, because the metalloporphyrin has a metal in the middle that can be catalytically active, the potential exists to make shape-selective catalysts for specific purposes. Not only can we selectively absorb molecules into the solid, we can also make the trapped molecules undergo chemical reactions ­ such as the catalytic oxidation of fuels."

Catalytic reactions that would convert the hydrocarbons in gasoline into the chemicals that react to make polymers such as nylon are not yet possible to achieve, Suslick said. "But the ability to use fossil fuels as chemical feedstocks, rather than just burning them, is a technology that will become very important this century."

Collaborators on the project were graduate student Margaret Kosal (now at Chem Sensing), postdoctoral researcher Jun-Hong Chou (now at Dupont), and X-ray crystallographer Scott Wilson. The National Institutes of Health and the U.S. Department of Energy funded the work.

James E. Kloeppel | News Bureau, UIUC
Further information:
http://www.news.uiuc.edu/scitips/02/0923sieve.html

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>