Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping Proteins: Researchers at Rensselaer Polytechnic Institute Discover a Better Way to Decode the Protein Language

24.09.2002


Two researchers at Rensselaer Polytechnic Institute are creating a faster, more efficient data-mining technique to determine basic rules of how proteins form. The researchers are Mohammed Zaki, assistant professor of computer science, and Chris Bystroff, assistant professor of biology.



Researchers can identify a protein’s biological function, and therefore its specific role in disease, if they know the 3-D structure of a protein given its amino-acid sequence.

Twenty simple amino acids make up the "language" that forms the thousands of complex proteins in the human body. The idea is to discover how amino acids, or "letters," lead to "words" or common patterns to form proteins.


With that in mind, Zaki and Bystroff’s approach involves creating a 3-D image of each known protein already recorded in the worldwide Protein Data Bank. The researchers then reduce the image to a simpler 2-D representation, called a "contact map." The 2-D map reveals the chemical and other interactions among amino acids-data that are difficult to extract from the more complex 3-D images.

The data are mined from the contact map is then transferred into a knowledge bank of "contact rules" and used to predict unknown proteins and even how novel proteins might form.

The research is funded under a three-year, $333,928 Early Career Principal Investigator Award from the U.S. Department of Energy.

The research will appear in the IEEE (Institute of Electrical and Electronics Engineers) journal, Transactions on Systems, Man and Cybernetics in early 2003. The work will also appear in 2003 in a chapter of a book, called Handbook of Data Mining (Publisher: Lawrence Earlbaum Associates).

CONTACT: Mohammed Zaki (518) 276-6340, zaki@cs.rpi.edu
Chris Bystroff (518) 276-3185, bystrc@rpi.edu

Jodi Ackerman | Rensselaer News and Information

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>