Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping Proteins: Researchers at Rensselaer Polytechnic Institute Discover a Better Way to Decode the Protein Language

24.09.2002


Two researchers at Rensselaer Polytechnic Institute are creating a faster, more efficient data-mining technique to determine basic rules of how proteins form. The researchers are Mohammed Zaki, assistant professor of computer science, and Chris Bystroff, assistant professor of biology.



Researchers can identify a protein’s biological function, and therefore its specific role in disease, if they know the 3-D structure of a protein given its amino-acid sequence.

Twenty simple amino acids make up the "language" that forms the thousands of complex proteins in the human body. The idea is to discover how amino acids, or "letters," lead to "words" or common patterns to form proteins.


With that in mind, Zaki and Bystroff’s approach involves creating a 3-D image of each known protein already recorded in the worldwide Protein Data Bank. The researchers then reduce the image to a simpler 2-D representation, called a "contact map." The 2-D map reveals the chemical and other interactions among amino acids-data that are difficult to extract from the more complex 3-D images.

The data are mined from the contact map is then transferred into a knowledge bank of "contact rules" and used to predict unknown proteins and even how novel proteins might form.

The research is funded under a three-year, $333,928 Early Career Principal Investigator Award from the U.S. Department of Energy.

The research will appear in the IEEE (Institute of Electrical and Electronics Engineers) journal, Transactions on Systems, Man and Cybernetics in early 2003. The work will also appear in 2003 in a chapter of a book, called Handbook of Data Mining (Publisher: Lawrence Earlbaum Associates).

CONTACT: Mohammed Zaki (518) 276-6340, zaki@cs.rpi.edu
Chris Bystroff (518) 276-3185, bystrc@rpi.edu

Jodi Ackerman | Rensselaer News and Information

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>