Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers find protein that both instigates, inhibits heart growth in mice

20.09.2002


Researchers at UT Southwestern Medical Center at Dallas have discovered a protein that regulates growth and development of the heart from its fetal stage to adulthood.


Dr. Eric Olson and a team of researchers have discovered a protein that continuously regulates heart development in mice from the embryonic stage to adulthood.



Findings published in today’s edition of Cell report that the protein, named Homeodomain-Only Protein (HOP) by the researchers, is active in controlling heart growth at various stages of development in mice. Dr. Eric Olson, chairman of molecular biology at UT Southwestern and the study’s principal investigator, said the team set out to find proteins unique to the heart and study their functions. After they identified HOP, they bred mice that were genetically unable to produce the protein, with dramatic results.

"We created knockout mice lacking the gene to produce this protein, and they fell into two classes – they either died as embryos because their hearts didn’t grow, or they survived to adulthood with too many cardiac muscle cells," said Olson, director of the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic Research in Pediatric Oncology.


"Understanding the mechanisms that regulate growth of heart cells has important implications for eventual therapies directed toward repairing the damaged heart," Olson said.

Observed problems during the fetal stages of the mutant mice included numerous ruptures of the ventricular walls, thin heart chamber layers and blood in the fibrous tissue surrounding the heart. After birth, there were elevations – as much as 19-fold – in the number of growing cardiac muscle cells in mutant compared to wild-type mice, and gene profiling showed that 179 genes had elevated expression and 90 genes had reduced expression.

The researchers believe that HOP works by controlling levels of serum response factor (SRF), a gene-activating protein, during heart development. SRF and three sibling proteins form a group called the MADS-box, and those proteins trigger genetic activity that produces a number of organs and systems. In the case of heart development, SRF controls the number and types of cells produced, and HOP controls the activity of SRF. Without HOP, SRF can’t properly balance heart-cell proliferation and differentiation, resulting in either an underdeveloped or overdeveloped heart.

"There has to be a finely tuned balance of proliferation and differentiation of cardiac cells for normal heart development," said Olson. "There’s a lot of interest in regulating the cardiac-cell cycle because the heart can’t repair itself; it can’t regenerate cells efficiently."

While Olson and his team believe the identification of HOP and its role in heart development is important, they also believe they’ve only uncovered a small fragment of the tableau.

"We need to figure out how to regulate HOP; obviously, other signals and proteins have to be involved to dictate that," Olson said. "But HOP is an important component of a mechanism that regulates heart growth."

San Diego-based Collateral Therapeutics Inc., a company working to develop genetic treatments for heart ailments, already has licensed the research in order to explore drug-development possibilities.

Wayne Carter | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>