Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure reveals details of cell’s cargo-carriers

19.09.2002


Using x-ray crystallography, researchers have produced the first images of a large molecular complex that helps shape and load the small, bubble-like vesicles that transport newly formed proteins in the cell. Understanding vesicle "budding" is one of the prerequisites for learning how proteins and other molecules are routed to their correct destinations in the cell.



In an article published in the September 19, 2002, issue of the journal Nature, Howard Hughes Medical Institute (HHMI) investigator Jonathan Goldberg, Xiping Bi and Richard Corpina at Memorial Sloan-Kettering Cancer Center unveil the intricate architecture of the "pre-budding complex," which is a set of proteins that participates in the formation of vesicles on the cell’s endoplasmic reticulum (ER). The pre-budding complex is the triggering component of a protein coat called COPII that grabs a section of the ER membrane, pinches it off to form the vesicle and packages the protein cargo to be transported.

"The structure developed by Bi, Corpina and Goldberg makes an important contribution to the understanding of vesicle formation -- a process central to the transport of newly formed proteins," said HHMI investigator Randy Schekman, a pioneer in vesicle studies at the University of California, Berkeley. "It illuminates in detail the mechanism by which the core complex of the COPII protein coat assembles on the ER membrane to initiate the process of membrane cargo capture and vesicle budding." Schekman and James Rothman of Memorial Sloan-Kettering Cancer Center, working independently, have identified many of the fundamental details of protein transport and secretion.


Goldberg said the entire pre-budding complex was considered an important structure to solve because of COPII’s role in protein transport. "What makes the COPII coat unique is that encoded in its proteins is much of the information that tells it to go to the endoplasmic reticulum and which cargo to take up from the ER," said Goldberg. "Also, COPII selects the appropriate fusion machinery, to ensure that the vesicle fuses with its correct target, a structure called the Golgi complex."

In order to understand the process of vesicle formation and transport in molecular terms, one must begin with the initiating event -- with the multi-component pre-budding complex, Goldberg said. "We had to get a clear structural picture of the intact particle so that we can understand the first event in budding, which begins the process of selecting the protein cargo," he said.

Bi, Corpina and Goldberg produced crystals of the entire complex and analyzed the structures of the proteins using x-ray crystallography. Their studies revealed how each of the components of the complex works: A component called Sar1 launches the budding process by anchoring itself to the ER membrane. Sar1 accomplishes this feat by changing its shape through a chemical reaction called GTP binding.

This shape change also enables Sar1-GTP to recruit a second component called Sec23/24, which attaches to form the pre-budding complex, Sec23/24-Sar1. The structure produced by Goldberg and his colleagues reveals how the change in Sar1’s shape enables Sec23/24 to recognize Sar1 and attach to it.

The scientists discovered that the pre-budding complex has a concave surface that hugs the ER membrane, conforming to the spherical shape that the vesicle will ultimately assume. According to Schekman, "the structure reveals the mechanism by which the complex anchors to the ER membrane and how its curvature might impart curvature to the membrane; and in doing so initiate the shape change that accompanies vesicle budding."

Goldberg’s group also identified the part of the complex that faces away from the ER membrane, which includes components that attract another molecule that knits together, or "polymerizes," the coat, pinching off the vesicle from the ER membrane like a mold. The new structure hints at how the coat disassembles itself by, in effect, "breaking the mold" around the vesicle, and freeing it to carry its protein cargo away to be released at the right place in the cell.

Now that they have solved the structure of the pre-budding complex, Goldberg and his colleagues can begin to explore another central question -- how do the vesicles "know" which proteins to take on as cargo?

"We suspect -- and it is a model that Randy Schekman put forward several years ago -- that the COPII coat is selecting many of the proteins directly," said Goldberg. "As we explore the coat structure further, I suspect we will see lots of binding-site ’ crevices’ that specific cargo can plug into and thereby enter the vesicle. So, our next task is to look for those crevices."

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>