Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure reveals details of cell’s cargo-carriers

19.09.2002


Using x-ray crystallography, researchers have produced the first images of a large molecular complex that helps shape and load the small, bubble-like vesicles that transport newly formed proteins in the cell. Understanding vesicle "budding" is one of the prerequisites for learning how proteins and other molecules are routed to their correct destinations in the cell.



In an article published in the September 19, 2002, issue of the journal Nature, Howard Hughes Medical Institute (HHMI) investigator Jonathan Goldberg, Xiping Bi and Richard Corpina at Memorial Sloan-Kettering Cancer Center unveil the intricate architecture of the "pre-budding complex," which is a set of proteins that participates in the formation of vesicles on the cell’s endoplasmic reticulum (ER). The pre-budding complex is the triggering component of a protein coat called COPII that grabs a section of the ER membrane, pinches it off to form the vesicle and packages the protein cargo to be transported.

"The structure developed by Bi, Corpina and Goldberg makes an important contribution to the understanding of vesicle formation -- a process central to the transport of newly formed proteins," said HHMI investigator Randy Schekman, a pioneer in vesicle studies at the University of California, Berkeley. "It illuminates in detail the mechanism by which the core complex of the COPII protein coat assembles on the ER membrane to initiate the process of membrane cargo capture and vesicle budding." Schekman and James Rothman of Memorial Sloan-Kettering Cancer Center, working independently, have identified many of the fundamental details of protein transport and secretion.


Goldberg said the entire pre-budding complex was considered an important structure to solve because of COPII’s role in protein transport. "What makes the COPII coat unique is that encoded in its proteins is much of the information that tells it to go to the endoplasmic reticulum and which cargo to take up from the ER," said Goldberg. "Also, COPII selects the appropriate fusion machinery, to ensure that the vesicle fuses with its correct target, a structure called the Golgi complex."

In order to understand the process of vesicle formation and transport in molecular terms, one must begin with the initiating event -- with the multi-component pre-budding complex, Goldberg said. "We had to get a clear structural picture of the intact particle so that we can understand the first event in budding, which begins the process of selecting the protein cargo," he said.

Bi, Corpina and Goldberg produced crystals of the entire complex and analyzed the structures of the proteins using x-ray crystallography. Their studies revealed how each of the components of the complex works: A component called Sar1 launches the budding process by anchoring itself to the ER membrane. Sar1 accomplishes this feat by changing its shape through a chemical reaction called GTP binding.

This shape change also enables Sar1-GTP to recruit a second component called Sec23/24, which attaches to form the pre-budding complex, Sec23/24-Sar1. The structure produced by Goldberg and his colleagues reveals how the change in Sar1’s shape enables Sec23/24 to recognize Sar1 and attach to it.

The scientists discovered that the pre-budding complex has a concave surface that hugs the ER membrane, conforming to the spherical shape that the vesicle will ultimately assume. According to Schekman, "the structure reveals the mechanism by which the complex anchors to the ER membrane and how its curvature might impart curvature to the membrane; and in doing so initiate the shape change that accompanies vesicle budding."

Goldberg’s group also identified the part of the complex that faces away from the ER membrane, which includes components that attract another molecule that knits together, or "polymerizes," the coat, pinching off the vesicle from the ER membrane like a mold. The new structure hints at how the coat disassembles itself by, in effect, "breaking the mold" around the vesicle, and freeing it to carry its protein cargo away to be released at the right place in the cell.

Now that they have solved the structure of the pre-budding complex, Goldberg and his colleagues can begin to explore another central question -- how do the vesicles "know" which proteins to take on as cargo?

"We suspect -- and it is a model that Randy Schekman put forward several years ago -- that the COPII coat is selecting many of the proteins directly," said Goldberg. "As we explore the coat structure further, I suspect we will see lots of binding-site ’ crevices’ that specific cargo can plug into and thereby enter the vesicle. So, our next task is to look for those crevices."

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org/

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>