Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Living in a glass house: Ocean organism’s novel dwelling helps Earth’s atmosphere

19.09.2002


Why live in a glass house? For diatoms -- tiny ocean-dwelling organisms that live in exquisitely ornate glass cases -- the benefit turns out to be enormous.


Diatom



In a paper published in the Sept. 13 issue of Science, Princeton scientists show that diatoms probably depend on glass to survive because the material facilitates photosynthesis. However, their study suggests that this domestic arrangement has a much bigger beneficiary: the entire planet, which owes its present-day, oxygen-rich and carbon-poor atmosphere in part to diatoms and their effective use of glass.

Diatoms are one-celled organisms that are so prolific they account for a quarter of all the photosynthesis on the planet. In photosynthesis, organisms use sunlight and carbon dioxide to make sugar and oxygen.


"These guys proliferated at a time when atmospheric carbon dioxide took a big dive" 40 to 60 million years ago, said geochemist Allen Milligan, who conducted the study in collaboration with Francois Morel, director of the Princeton Environmental Institute.

The low carbon dioxide levels, while good for us today, posed a serious problem for plant life: how to perform photosynthesis when one of the raw ingredients is in short supply. Milligan and Morel found that diatoms solved the problem by encasing themselves in glass, which has chemical properties that help them concentrate carbon dioxide inside their vessels. With this device, diatoms flourished and now play an important role in keeping carbon dioxide levels low.

Diatoms have been a source of fascination since the first microscopes of the 1600s allowed scientists to sketch their intricate glass cases in pen and ink. The tough porous shells also have a variety of commercial uses. Swimming pool owners commonly use diatomaceous earth, which is rich with old diatom shells, to filter contaminants from pool water. In the 1860s, Alfred Nobel invented dynamite by using silica from diatoms to stabilize nitroglycerine into a portable stick.

"What we didn’t know was what good this glass wall is to the diatom itself," said Milligan.

According to Milligan and Morel’s study, the answer may have less to do with the structural properties that make diatoms useful to people than with the chemistry of silicon, a chief ingredient of glass. The researchers found that silica in the glass changes the acid-base chemistry of the water inside the shell, creating ideal conditions for one of the chemical reactions involved in photosynthesis.

By evolving this built-in reaction vessel, diatoms have had a tremendous impact, said Morel. "They are among the most successful organisms on earth."

The discovery is likely to be useful to scientists in a number of disciplines, said Morel, because it links two previously separate areas of research: the study of carbon and how it cycles through water, biological organisms and the atmosphere, and the study of silicon and how it cycles between water, diatoms and sediments.

Scientists who are trying to map past variations in the earth’s climate, for example, might use fossil records of diatoms and other indicators to infer how carbon dioxide concentration and diatom abundance have influenced each other at different points in the past. Having a firm grasp of such historical processes has become increasingly important as scientists try to predict the effects of greenhouse gas emissions, including carbon dioxide.

The study also offers an explanation for why diatom shells are so ornate. The many pores and filigrees create a lot of surface area, exposing much more glass to water than would be the case for a smooth structure. That extra surface area might make photosynthesis more efficient for the diatom. "These are very pretty things and their beauty might in fact be related to their function," said Morel.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>