Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big-Bottomed Sheep Have A Rare Genetic Mutation That Builds Muscle, Not Fat

17.09.2002


Scientists have discovered an elusive, mutated gene named for the Greek goddess, Aphrodite Kallipygos, that causes certain sheep to have unusually big and muscular bottoms. They hope the genetic mutation will illuminate how muscle and fat are deposited in these animals and possibly in humans.



The discovery is especially exciting, said the researchers, because the unusual gene has evaded all the traditional means of detection for nearly a decade. In fact, the gene appears to represent one of numerous stealth genes, called “imprinted,” that have yet to be discovered but which could produce a wide range of diseases.

Researchers from the U.S. Department of Agriculture and Duke University Medical Center discovered a gene called “callipyge,” (pronounced cal - ah - PEEJ) meaning “beautiful buttocks” in Greek, because the sheep have large, muscular bottoms with very little fat. Such an attribute could prove beneficial in breeding these sheep because it enables them to convert food into muscle 30 percent more efficiently than normal sheep. Moreover, the gene could explain specific processes that give rise to obesity and fat metabolism, said Randy Jirtle, Ph.D., professor of radiation oncology at Duke and co-author of the study.


“These sheep are, in effect, pumping iron without lifting weights,” explained Jirtle. “They are converting food into muscle in their hind regions, instead of converting food into fat.”

Results of the study, funded by the USDA and the National Institutes of Health, are published in the October 2002 issue of Genome Research.

Excited as they are to have unearthed the gene behind the big-bottomed sheep, the scientists say their discovery has equally dramatic implications for mining the human genome. The callipyge gene appears to be among a rare subset that eludes traditional methods of identification and mapping, said USDA geneticist Brad Freking, Ph.D., lead investigator of the study.

Called imprinted genes because they are literally stamped with markings that inactivate one parent’s copy, such genes are quite rare and unusual in the way they operate. They often work only in specific tissues and at defined intervals during an animal’s development, said Susan Murphy, Ph.D., a Duke University Medical Center co-author.

“Finding imprinted genes can depend on when and where in the body you search for them,” said Murphy. “If you look for an imprinted gene in a mature animal when that gene is only expressed during fetal development, then you may miss it entirely.”

The researchers sought an imprinted gene because the big-bottomed sheep inherited a functional copy of the mutated gene from their father alone -- the mother’s copy is turned off. Silencing of one parental copy is characteristic of imprinted genes.

For 10 years, the researchers searched likely regions where the callipyge gene and its mutation might reside; namely, in known genes on sheep chromosome 18, according to previous research. But their efforts turned up intact genes with no mutations. Finally, the team of researchers tried a novel approach.

They compared a specific DNA sequence from inbred offspring of the original big-bottomed sheep against the DNA of normal sheep to look for minute genetic variations, called “markers.” While they found 600 distinct “markers,” only one was unique to the callipyge sheep: a single base change from A to G in the DNA sequence. Further testing showed this mutation alone clearly gave rise to the sheep’s big-bottom stature.

Yet the mutation appeared to reside in a “gene desert,” where no known gene had previously been mapped, said Freking. Interestingly, when they compared this sequence in the sheep to the same region of humans and mice, they found that the DNA sequences surrounding the callipyge mutation were highly similar in all three species.

“The more similar the region, the more likely the genetic sequence was conserved for an important biological reason,” said Jirtle. So, the scientists searched deeper for evidence of a gene’s presence. They tested whether the DNA in this conserved region was used as a template to make RNA within the callipyge sheeps’ affected tissue. Finding RNA would signal the presence of a gene, since RNA is generally made from a gene in the process of producing a protein.

Surprisingly, they found an RNA “transcript” or copy, suggesting that the mutation is located in a previously unidentified gene.

“This is the first time in animals where a mutation has been found that leads to the identification of a new gene, rather than analyzing a known gene to find its mutation,” said Jirtle. “As scientists, we are missing many genes and their mutations by using the traditional approach of linkage analysis to locate and analyze candidate genes.”

Now that that they have found the callipyge gene, the next major step is determining how it gives rise to the big-bottomed trait or “phenotype.” Researchers have long known that a nearby gene, called DLK-1, is over-expressed in the hind quarters of callipyge sheep. Yet DLK-1 has no mutations. Thus, the researchers speculate that the mutated callipyge gene is inappropriately regulating the expression of DLK-1 and/or other imprinted genes in this domain.

“We believe the regulation of this imprinted domain is flawed, rather than other genes in this domain being mutated,” said Jirtle. “Mutated callipyge is having a downstream effect on DLK-1, and potentially on other imprinted genes in this region, that in some manner stunts fat cells from maturing while enhancing hind quarter musculature.”

DLK-1 has been studied in other contexts because it is overexpressed in neuroendocrine tumors such as pheochromocytoma and neuroblastoma, and also is involved in the maturation of fat cells and the adrenal gland, said Jirtle. DLK-1 is imprinted, lending further credence to the assumption that callipyge is also imprinted.

“Imprinted genes are like mushrooms, because they are present in groups,” said Jirtle. “Moreover, they display a domino effect, in that one mutation of an imprinted gene could knock out five or 10 genes in one hit, especially when they are all regulated as a group.”

“These are incredibly powerful and subtle genes that bring you into a whole different realm of thinking about gene regulation,” said Jirtle. “In a way, we are at the end of the beginning. We know the specific gene mutation that leads to large bottoms in sheep, but now we have to find how it operates.”


contact sources:
Randy Jirtle Ph.D. , (919) 684-2770 jirtle@radonc.duke.edu

Rebecca Levine | EurekAlert!
Further information:
http://www.mc.duke.edu/

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>