Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists show proteins behave differently inside cells than they do in water solutions

16.09.2002


In findings they believe are fundamentally important to both biology and medicine, chemists at the University of North Carolina at Chapel Hill have shown experimentally for the first time that proteins can behave differently inside cells than when taken out of those cells and studied in test tubes.



"For 40 years, we thought we could learn most everything about proteins by studying them in water, but this work shows we are missing important observations by looking at them just in water or other solutions," said Dr. Gary Pielak, professor of chemistry and lead author of the study. "Our work demonstrates that we need to study them under the conditions they are found in inside the cell."

The research is relevant to medicine because the protein is related to proteins associated with Parkinson’s and Alzheimer’s diseases and cancer, the scientists say.


"Proteins are the robots of the cell in that they perform countless functions including allowing cells to grow and reproduce," Pielak said. "Almost everything we know about them comes from research done in test tubes in water solutions. But inside cells, where proteins work, there are no dilute solutions because the interior is crowded with proteins, which take up about 40 percent of the volume."

Working under Pielak’s supervision, Matthew Dedmon of Gastonia, N.C., used nuclear magnetic resonance (NMR) spectroscopy to examine what effects the crowded environment had on protein shape because the shape of a protein determines its function. The team found that a so-called "intrinsically unstructured" protein, which in water appears to have no fixed structure, shows a definite folded-up shape when inside cells.

Among other things, the experiments involved measuring the proteins with a nucleus of nitrogen known as N-15 and then recording and comparing their NMR spectrum both inside cells and outside cells under artificially crowded conditions.

A report on the findings was scheduled to appear online today (Sept. 13) in the Proceedings of the National Academy of Sciences. A senior when he conducted the experiments last year, Dedmon is now on a National Science Foundation Graduate Rsearch Fellowship at England’s University of Cambridge. Other authors are Chetan N. Patel, a doctoral student in chemistry, and Dr. Gregory B. Young, manager of the UNC Biomolecular NMR Facility.

"Scientists had theorized for many years that solutions crowded with molecules would tend to favor molecular shapes that had the smallest surface areas," Pielak said. "In some ways, the explanation of our observation has been around for two centuries – since the time of Le Chatelier," he said. "In the past, however, it has been so difficult to do these experiments that few have even tried." With the new information pouring in from the Human Genome Project and other efforts to identify genes, scientists hope to create models of cellular metabolism, which would advance understanding of health and illness, Pielak said.

"But to make a model of cellular metabolism that would run in a computer, you need to know how tightly these proteins bind to one another and how fast they bind," he said. "All those data so far are from solutions that were mainly water. If there are differences between what we measure in dilute solutions and what occurs in cells, no one will ever be able to model metabolism. That means we need to look more thoroughly at the conditions found inside cells and measure them."

"What impresses me the most about this discovery is the clear demonstration that the environment of proteins in real life situations -- the proximity of billions of other molecules such as lipids, sugars, salts and water, for example -- has a profound influence on their three-dimensional structure," said Dr. Edward T. Samulski, Boshamer and Distinguished professor of chemistry at UNC. "Everyone knows that this three-D structure is essential in biology, but very few investigators have had the courage to look at proteins in the complex soup they actually live in."

The National Science Foundation, the Petroleum Research Fund and the Smallwood Foundation supported the study, said Pielak, also a member of the UNC Lineberger Comprehensive Cancer Center and professor of biochemistry and biophysics at the UNC School of Medicine.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>