Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists show proteins behave differently inside cells than they do in water solutions

16.09.2002


In findings they believe are fundamentally important to both biology and medicine, chemists at the University of North Carolina at Chapel Hill have shown experimentally for the first time that proteins can behave differently inside cells than when taken out of those cells and studied in test tubes.



"For 40 years, we thought we could learn most everything about proteins by studying them in water, but this work shows we are missing important observations by looking at them just in water or other solutions," said Dr. Gary Pielak, professor of chemistry and lead author of the study. "Our work demonstrates that we need to study them under the conditions they are found in inside the cell."

The research is relevant to medicine because the protein is related to proteins associated with Parkinson’s and Alzheimer’s diseases and cancer, the scientists say.


"Proteins are the robots of the cell in that they perform countless functions including allowing cells to grow and reproduce," Pielak said. "Almost everything we know about them comes from research done in test tubes in water solutions. But inside cells, where proteins work, there are no dilute solutions because the interior is crowded with proteins, which take up about 40 percent of the volume."

Working under Pielak’s supervision, Matthew Dedmon of Gastonia, N.C., used nuclear magnetic resonance (NMR) spectroscopy to examine what effects the crowded environment had on protein shape because the shape of a protein determines its function. The team found that a so-called "intrinsically unstructured" protein, which in water appears to have no fixed structure, shows a definite folded-up shape when inside cells.

Among other things, the experiments involved measuring the proteins with a nucleus of nitrogen known as N-15 and then recording and comparing their NMR spectrum both inside cells and outside cells under artificially crowded conditions.

A report on the findings was scheduled to appear online today (Sept. 13) in the Proceedings of the National Academy of Sciences. A senior when he conducted the experiments last year, Dedmon is now on a National Science Foundation Graduate Rsearch Fellowship at England’s University of Cambridge. Other authors are Chetan N. Patel, a doctoral student in chemistry, and Dr. Gregory B. Young, manager of the UNC Biomolecular NMR Facility.

"Scientists had theorized for many years that solutions crowded with molecules would tend to favor molecular shapes that had the smallest surface areas," Pielak said. "In some ways, the explanation of our observation has been around for two centuries – since the time of Le Chatelier," he said. "In the past, however, it has been so difficult to do these experiments that few have even tried." With the new information pouring in from the Human Genome Project and other efforts to identify genes, scientists hope to create models of cellular metabolism, which would advance understanding of health and illness, Pielak said.

"But to make a model of cellular metabolism that would run in a computer, you need to know how tightly these proteins bind to one another and how fast they bind," he said. "All those data so far are from solutions that were mainly water. If there are differences between what we measure in dilute solutions and what occurs in cells, no one will ever be able to model metabolism. That means we need to look more thoroughly at the conditions found inside cells and measure them."

"What impresses me the most about this discovery is the clear demonstration that the environment of proteins in real life situations -- the proximity of billions of other molecules such as lipids, sugars, salts and water, for example -- has a profound influence on their three-dimensional structure," said Dr. Edward T. Samulski, Boshamer and Distinguished professor of chemistry at UNC. "Everyone knows that this three-D structure is essential in biology, but very few investigators have had the courage to look at proteins in the complex soup they actually live in."

The National Science Foundation, the Petroleum Research Fund and the Smallwood Foundation supported the study, said Pielak, also a member of the UNC Lineberger Comprehensive Cancer Center and professor of biochemistry and biophysics at the UNC School of Medicine.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>