Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists show proteins behave differently inside cells than they do in water solutions

16.09.2002


In findings they believe are fundamentally important to both biology and medicine, chemists at the University of North Carolina at Chapel Hill have shown experimentally for the first time that proteins can behave differently inside cells than when taken out of those cells and studied in test tubes.



"For 40 years, we thought we could learn most everything about proteins by studying them in water, but this work shows we are missing important observations by looking at them just in water or other solutions," said Dr. Gary Pielak, professor of chemistry and lead author of the study. "Our work demonstrates that we need to study them under the conditions they are found in inside the cell."

The research is relevant to medicine because the protein is related to proteins associated with Parkinson’s and Alzheimer’s diseases and cancer, the scientists say.


"Proteins are the robots of the cell in that they perform countless functions including allowing cells to grow and reproduce," Pielak said. "Almost everything we know about them comes from research done in test tubes in water solutions. But inside cells, where proteins work, there are no dilute solutions because the interior is crowded with proteins, which take up about 40 percent of the volume."

Working under Pielak’s supervision, Matthew Dedmon of Gastonia, N.C., used nuclear magnetic resonance (NMR) spectroscopy to examine what effects the crowded environment had on protein shape because the shape of a protein determines its function. The team found that a so-called "intrinsically unstructured" protein, which in water appears to have no fixed structure, shows a definite folded-up shape when inside cells.

Among other things, the experiments involved measuring the proteins with a nucleus of nitrogen known as N-15 and then recording and comparing their NMR spectrum both inside cells and outside cells under artificially crowded conditions.

A report on the findings was scheduled to appear online today (Sept. 13) in the Proceedings of the National Academy of Sciences. A senior when he conducted the experiments last year, Dedmon is now on a National Science Foundation Graduate Rsearch Fellowship at England’s University of Cambridge. Other authors are Chetan N. Patel, a doctoral student in chemistry, and Dr. Gregory B. Young, manager of the UNC Biomolecular NMR Facility.

"Scientists had theorized for many years that solutions crowded with molecules would tend to favor molecular shapes that had the smallest surface areas," Pielak said. "In some ways, the explanation of our observation has been around for two centuries – since the time of Le Chatelier," he said. "In the past, however, it has been so difficult to do these experiments that few have even tried." With the new information pouring in from the Human Genome Project and other efforts to identify genes, scientists hope to create models of cellular metabolism, which would advance understanding of health and illness, Pielak said.

"But to make a model of cellular metabolism that would run in a computer, you need to know how tightly these proteins bind to one another and how fast they bind," he said. "All those data so far are from solutions that were mainly water. If there are differences between what we measure in dilute solutions and what occurs in cells, no one will ever be able to model metabolism. That means we need to look more thoroughly at the conditions found inside cells and measure them."

"What impresses me the most about this discovery is the clear demonstration that the environment of proteins in real life situations -- the proximity of billions of other molecules such as lipids, sugars, salts and water, for example -- has a profound influence on their three-dimensional structure," said Dr. Edward T. Samulski, Boshamer and Distinguished professor of chemistry at UNC. "Everyone knows that this three-D structure is essential in biology, but very few investigators have had the courage to look at proteins in the complex soup they actually live in."

The National Science Foundation, the Petroleum Research Fund and the Smallwood Foundation supported the study, said Pielak, also a member of the UNC Lineberger Comprehensive Cancer Center and professor of biochemistry and biophysics at the UNC School of Medicine.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>