Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wake Forest-Johns Hopkins team discovers prostate cancer gene

16.09.2002


Scientists in the Center for Human Genomics at Wake Forest University School of Medicine and Johns Hopkins Medical Institutions have discovered a gene that "may play an important role in prostate cancer susceptibility in both African-American men and men of European descent."



The 31-member team reports in the October issue of Nature Genetics that mutations in the MSR1 (for Macrophage Scavenger Receptor 1) gene were found in 4.4 percent of Caucasians who had prostate cancer, compared to 0.8 percent who were found to be unaffected following prostate cancer screening. A different mutation of the gene was found in 12.5 percent of African-American men with prostate cancer, compared to 1.82 percent of unaffected men.

Both differences are highly significant statistically. "One of the mutations leads to prostate cancer that has rapid metastasis," said Jianfeng Xu, M.D., Dr. P.H., associate professor of both public health sciences (epidemiology) and cancer biology at Wake Forest.


Prostate cancer is the most common cancer in men, with more than 300,000 new cases diagnosed annually. The highest risk and the greatest mortality is among African-Americans.

Xu, Deborah A. Meyers, Ph.D., professor of pediatrics (medical genetics), S. Lilly Zheng, M.D., research assistant professor of internal medicine (pulmonary), and nine other Wake Forest researchers, said in their report, "We provide novel genetic evidence that MSR1 may play an important role in prostate cancer susceptibility." MSR1 was already known for its role in hardening of the arteries.

They said they had found seven potentially important mutations of the MSR1 gene -- including the rapidly metastasizing form that truncates (and makes dysfunctional) the MSR1 protein -- in families with hereditary prostate cancer. "Importantly, they were either not observed or observed less frequently in men without prostate cancer," they reported.

Just as there are a number of breast cancer genes, the MSR1 gene probably will turn out to be one of a number of genes linked to prostate cancer. However, MSR1 appears to be the strongest gene linked to inherited prostate cancer risk thus far, they said.

Working with William B. Isaacs, Ph.D., Patrick C. Walsh, M.D., and others at Johns Hopkins, the research team evaluated the role of MSR1 in a large number of subjects from multiple populations. They began with 159 patients from families that averaged five or more men with prostate cancer, evaluating samples of their DNA to look at the MSR1 gene, and they found eight mutations. They sought samples from all family members of these 159 patients.

Seven mutations were rare, showing up in a total of 13 families. Six of those families -- all of European descent -- had the rapidly metastasizing one they called Arg293X. Another four families, all African-Americans, had a variant called D174Y; five mutations were found in one family each. The eighth, a common variant, P275A, was found in 30 of the 159 families. Using various statistical analyses, they found links between these mutations and prostate cancer. Xu and Meyers began looking for other groups in the general population that had already been studied for other diseases, adding analysis of variants of the MSR1 gene. They looked at a group of 518 men who were studied for asbestos exposure, regardless of their prostate cancer status. They found the Arg293X variant seven times among 469 men of European descent.

"Interestingly, two of these carriers were among the 28 men in this group diagnosed with prostate cancer," they said.

When they analyzed 49 African-Americans in the asbestos study, they found two with the D174Y variant they already were tracking in their hereditary prostate cancer families; one of the two already had a high normal PSA test.

Since the gene is on a macrophage scavenger -- a white blood cell that goes after bacteria, cell fragments and even whole diseased cells --the Johns Hopkins team is studying the relationship between MSR1 and inflammation. They have data that suggests macrophages carrying variants in the MSR1 gene may not be able to fight infections as well as non-affected macrophages. That may explain the already suggested link between infection and prostate cancer.

Robert Conn | EurekAlert!

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>