Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme discovery to benefit homeland security, industry

13.09.2002


Scientists at the Department of Energy’s Pacific Northwest National Laboratory have successfully immobilized enzymes while simultaneously enhancing their activity and stability, opening up new possibilities for using tailored nanoporous materials. The findings, reported in an upcoming issue of the Journal of the American Chemical Society (available online Aug. 28), could enable the development of novel sensor and decontamination systems for homeland security, environmental protection and energy generation as well as new industrial chemicals and separations.



"For decades, scientists have been searching for ways to immobilize soluble enzymes with a variety of solid materials. But the results have been disappointing because only small amounts of the immobilized enzymes show any biological activity," said Eric Ackerman, PNNL molecular biologist. "For the first time, we have immobilized an enzyme at high concentrations in a way that actually enhances its stability and activity."

In lab tests, PNNL scientists nearly doubled the activity levels of an enzyme called organophosphorus hydrolase, known for its potential for biosensing and decontaminating poisonous agents.


"By using different highly active and stable immobilized enzymes, we could potentially make enzymatic systems to inactivate certain chemicals or bioweapons, thus serving as a protective barrier in air filtration systems," said Ackerman.

Fabrication of a more stable and active enzyme delivery method could potentially benefit other industries as well. For example, food processing companies use natural enzymes to produce items such as cheese, beer and soft drinks, while the biomedical industry uses them to manufacture drugs. Enzymes, which are proteins found in all organisms from humans to viruses, function as catalysts. Increasing an enzyme’s activity—while enhancing enzyme stability—could facilitate more efficient chemical processes.

To achieve enhanced stability and activity, scientists modified existing nanoporous silica originally developed at PNNL to sequester mercury for environmental remediation. This material, called SAMMS—for Self-Assembled Monolayers on Mesoporous Supports—contains uniform pores that can be prepared with a variety of pore sizes according to the application. In this case, researchers enlarged the pores to 30 nanometers, which is a size sufficiently spacious to accommodate the immobilized enzymes. Then, the pore surfaces were coated with a specific chemical compound to provide an optimal environment for enzyme activity and stability.

The JACs paper is available online at http://pubs.acs.org/journals/jacsat/asap.cgi/jacsat/asap/pdf/ja026855o.pdf. This research was conducted through PNNL’s Nanoscience and Nanotechnology Initiative (www.pnl.gov/nano).

Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov.

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.

Staci Maloof | alfa
Further information:
http://www.pnl.gov/news/2002/02-29.htm

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>