Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research may take the "anti" out of antioxidants

12.09.2002


In the quest to repair damaged DNA - a process believed crucial in combating ailments ranging from cancer to aging - antioxidant has been the Holy Grail. But findings published this week in Nature suggest oxidation isn’t always the enemy.


Robert Hausinger and Timothy Henshaw



Scientists at Michigan State University, along with colleagues in England, have uncloaked a mechanism that uses oxygen to repair DNA - until now an unlikely part of the restorative recipe. Their work is published in the Sept. 12 issue of the British science journal Nature.

"This offers possibilities to anyone working in the DNA repair field who likely hasn’t considered oxygenation before," said Robert Hausinger, an MSU microbiology and biochemistry professor. "The field has been so focused against it."


Hausinger, his doctoral student Timothy Henshaw and colleagues from the Cancer Research UK London Research Institute in Hertfordshire, England, figured out how an enzyme in E. coli bacteria handily repairs DNA that suffer a common type of damage. In particular, one peril that can befall DNA is a process called methylation, in which a methyl group latches on to the strand, threatening mutation.

Enzymes are the superheroes of the DNA world, rushing to fix the strands that are the building blocks of all life. Some proteins are effective at knocking off the offending methyl group, but die in the process. This "suicide repair" means the enzymes are only good for one fight. Others get rid of the methyl group along with one of the rungs of the DNA ladder, leaving a big hole in the DNA strand that must be repaired.

Hausinger and Henshaw focused their attention on the protein AlkB. Researchers have known AlkB for years, but didn’t understand how the enzyme worked its repair magic. The MSU team discovered it neatly performs a chemical mambo that uses iron and oxygen to burn off the renegade methyl group. What’s left at the end of oxidation is formaldehyde.

The British part of the team - Sarah Trewick, Tomas Lindahl and Barbara Sedgwick, confirmed repair of the DNA, allowing survival of the cells.

"It’s sweet," Hausinger said. "It burns off the methylation and doesn’t kill itself in the process. It can work on one lesion and then move on and do it again."

Methylation isn’t always bad, Hausinger said, but rather is an important natural process that also occurs in human DNA. However, the process is part of DNA damage associated with some environmental toxins, as well as in cancer and maladies of aging.

"Although we worked with AlkB from E. coli, the enzyme is actually found in a wide variety of organisms, including humans," Henshaw said. "Since it’s so widely conserved, it’s likely to have a role in some crucial biological functions."

The U.S. National Institutes of Health funded the research.

Sue Nichols | EurekAlert!
Further information:
http://www.msu.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>