Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex-pheromone link to insect evolution

11.09.2002


Cornell University entomologists have unlocked an evolutionary secret to how insects evolve into new species. The discovery has major implications for the control of insect populations through disruption of mating, suggesting that over time current eradication methods could become ineffective, similar to the way insects develop pesticide resistance.



The researchers, led by Wendell L. Roelofs, the Liberty Hyde Bailey Professor of Insect Biochemistry at Cornell, made the discovery while examining ways to keep European corn borers from mating, multiplying and then chewing up farmers’ fields. They discovered the existence of a previously undetected gene, the delta-14, that can regulate the attractant chemicals produced in sex-pheromone glands of female borers. The gene can be suddenly switched on, changing the pheromone components that females use to attract males for mating.

The entomologists have demonstrated that insects evolve chemical systems in leaps rather than in minute stages, as had been previously assumed. The researchers also discovered that there are rare males in the corn borer population -- about 1 in 200 -- capable of responding to chemicals produced by the delta-14 gene.


"This is one way that insects become new species," says Roelofs, whose paper, "Evolution of moth sex pheromones via ancestral genes," will be published on the web site of the Proceedings of the National Academy of Science (Sept. 9-15, 2002.) The Cornell co-authors on the paper are: Weitian Liu, research associate in entomology; Guixia Hao, postdoctoral researcher in entomology; Hongmei Jiao, laboratory technician in entomology; and Charles E. Linn Jr., senior research associate in entomology. Alejandro P. Rooney, Mississippi State University assistant professor in biological sciences also contributed to the paper. The research was funded by the National Science Foundation and will continue to be funded by the U.S. Department of Agriculture’s National Research Initiative.Roelofs explains that female insects attract males with specialized pheromones that he compares to radio frequencies. At major events with thousands of people, for instance, police might communicate on channel one, emergency medical personnel on channel two and administrators on channel three.

"With male and female borers, it’s the same thing," says Roelofs. "Certain species communicate on channel one, others on channel two, others on channel three. But when a female has a mutated delta-14 gene -- and by mutated I mean the gene is turned on -- it changes her channel from three to five. That means that out of 200 male borers, 199 cannot respond to her. It’s the one male borer capable of responding to her very selective channel that sets out to mate."

Soon other females with the delta-14 gene mate with other rare respondent males. Eventually, over time, the males and females stabilize their pheromone communication system, essentially isolating this new population from the parent species. "That’s one way species evolve," Roelofs says.

Manipulation of insect chemistry is an effective pest control strategy in that it can be used to disrupt mating behavior. For more than 20 years, Roelofs’ research at Cornell’s New York State Agricultural Experiment Station in Geneva has focused on chemical analyses of the pheromone components. Agricultural researchers have identified pheromones in over 1,000 species of insects and use them to monitor pest populations in 250 species and to disrupt mating in more than 20 species, Roelofs says.

This new research has implications for pest control. In addition to explaining how pheromone evolution might have occurred in the past, the paper also demonstrates that the conditions required for dramatic shifts in pheromone blends could well be present today and in the future. Insect populations could be capable of shifting away from a pheromone blend being used for their control in the field, making such control ineffective.

"Based on the difficulty of generating even small changes in pheromone blends in the lab, we thought that such resistance could not develop because natural pressure would prevent the species from gradually shifting to a different blend," says Roelofs. The presence of this kind of gene, capable of sudden activation, might provide a mechanism for resistance to occur, although no evidence for this has been found so far, he notes.

Roelofs expects this discovery to stimulate more research in this area, specifically to determine the breadth of the phenomenon and how it affects the evolution of many insect communication systems. His research team will be working on the genomes of fruit flies, mosquitoes, crickets and silkworms to detect if these kinds of genes are present.

Blaine P. Friedlander, Jr. | Cornell University News Service

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>