Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consciousness - the hardest problem in science

06.09.2002


A Surrey scientist claims to have an answer to what is often considered to be the hardest problem in science (sometimes just known as the “Hard Problem”): why we are aware.



Johnjoe McFadden, Professor of Molecular Genetics at the University of Surrey, has previously proposed that consciousness is generated by the brain’s electromagnetic field, the cemi field. The cemi field theory – that our thoughts are electric fields in the brain – has generated a lot of interest both in the UK and across the world. In McFadden’s theory nerve signals – the wires of the brain – are responsible for driving our unconscious actions (like walking or driving to work every day, when our conscious mind seems to be elsewhere) but our conscious thoughts are the electric fields that ebb and flow through the brain. Nerves and wires can only encode (know) ones and zeros but fields can encode the complexity of our thoughts.

Now, in a paper published in the latest issue of Journal of Consciousness Studies (Johnjoe McFadden, 2002 “The Conscious Electromagnetic Information (Cemi) Field Theory: The Hard Problem Made Easy?”) McFadden proposes an answer to the hard problem, claiming that awareness is electromagnetic field information, viewed from the inside.


Many apparently very different phenomena in physics are really the same thing, viewed from different frames of reference. For instance an electromagnetic field may be experienced as an electric field from one frame of reference (stationary) but a magnetic field from another frame of reference (moving). Similarly, in relativity theory, space and time are the same phenomenon – spacetime – viewed from different perspectives.

From the outside, information in the brain may be seen as patterns of neural firing or electrical field strengths. But from the perspective of those photons that comprise the brain’s electromagnetic field (our conscious mind), information is experienced as awareness.

In this view, awareness is a fundamental property of information. But only the information in the electromagnetic field of complex brains is capable of communicating (and has anything interesting to say). Consciousness is awareness that can talk.

The theory has huge implications for our understanding of mind and the design of artificial intelligence. McFadden claims that conventional computers, no matter how fast or complex, will never have conscious thoughts. They (like the neurons in our brain) think through wires rather than fields. They can only know (be aware of) ones and zeros. But it may soon be possible to build a revolutionary new kind of computer, one that uses electric fields to compute. An artificial conscious mind may not be so far away.

Liezel Tipper | alfa

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>