Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consciousness - the hardest problem in science

06.09.2002


A Surrey scientist claims to have an answer to what is often considered to be the hardest problem in science (sometimes just known as the “Hard Problem”): why we are aware.



Johnjoe McFadden, Professor of Molecular Genetics at the University of Surrey, has previously proposed that consciousness is generated by the brain’s electromagnetic field, the cemi field. The cemi field theory – that our thoughts are electric fields in the brain – has generated a lot of interest both in the UK and across the world. In McFadden’s theory nerve signals – the wires of the brain – are responsible for driving our unconscious actions (like walking or driving to work every day, when our conscious mind seems to be elsewhere) but our conscious thoughts are the electric fields that ebb and flow through the brain. Nerves and wires can only encode (know) ones and zeros but fields can encode the complexity of our thoughts.

Now, in a paper published in the latest issue of Journal of Consciousness Studies (Johnjoe McFadden, 2002 “The Conscious Electromagnetic Information (Cemi) Field Theory: The Hard Problem Made Easy?”) McFadden proposes an answer to the hard problem, claiming that awareness is electromagnetic field information, viewed from the inside.


Many apparently very different phenomena in physics are really the same thing, viewed from different frames of reference. For instance an electromagnetic field may be experienced as an electric field from one frame of reference (stationary) but a magnetic field from another frame of reference (moving). Similarly, in relativity theory, space and time are the same phenomenon – spacetime – viewed from different perspectives.

From the outside, information in the brain may be seen as patterns of neural firing or electrical field strengths. But from the perspective of those photons that comprise the brain’s electromagnetic field (our conscious mind), information is experienced as awareness.

In this view, awareness is a fundamental property of information. But only the information in the electromagnetic field of complex brains is capable of communicating (and has anything interesting to say). Consciousness is awareness that can talk.

The theory has huge implications for our understanding of mind and the design of artificial intelligence. McFadden claims that conventional computers, no matter how fast or complex, will never have conscious thoughts. They (like the neurons in our brain) think through wires rather than fields. They can only know (be aware of) ones and zeros. But it may soon be possible to build a revolutionary new kind of computer, one that uses electric fields to compute. An artificial conscious mind may not be so far away.

Liezel Tipper | alfa

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>