Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consciousness - the hardest problem in science

06.09.2002


A Surrey scientist claims to have an answer to what is often considered to be the hardest problem in science (sometimes just known as the “Hard Problem”): why we are aware.



Johnjoe McFadden, Professor of Molecular Genetics at the University of Surrey, has previously proposed that consciousness is generated by the brain’s electromagnetic field, the cemi field. The cemi field theory – that our thoughts are electric fields in the brain – has generated a lot of interest both in the UK and across the world. In McFadden’s theory nerve signals – the wires of the brain – are responsible for driving our unconscious actions (like walking or driving to work every day, when our conscious mind seems to be elsewhere) but our conscious thoughts are the electric fields that ebb and flow through the brain. Nerves and wires can only encode (know) ones and zeros but fields can encode the complexity of our thoughts.

Now, in a paper published in the latest issue of Journal of Consciousness Studies (Johnjoe McFadden, 2002 “The Conscious Electromagnetic Information (Cemi) Field Theory: The Hard Problem Made Easy?”) McFadden proposes an answer to the hard problem, claiming that awareness is electromagnetic field information, viewed from the inside.


Many apparently very different phenomena in physics are really the same thing, viewed from different frames of reference. For instance an electromagnetic field may be experienced as an electric field from one frame of reference (stationary) but a magnetic field from another frame of reference (moving). Similarly, in relativity theory, space and time are the same phenomenon – spacetime – viewed from different perspectives.

From the outside, information in the brain may be seen as patterns of neural firing or electrical field strengths. But from the perspective of those photons that comprise the brain’s electromagnetic field (our conscious mind), information is experienced as awareness.

In this view, awareness is a fundamental property of information. But only the information in the electromagnetic field of complex brains is capable of communicating (and has anything interesting to say). Consciousness is awareness that can talk.

The theory has huge implications for our understanding of mind and the design of artificial intelligence. McFadden claims that conventional computers, no matter how fast or complex, will never have conscious thoughts. They (like the neurons in our brain) think through wires rather than fields. They can only know (be aware of) ones and zeros. But it may soon be possible to build a revolutionary new kind of computer, one that uses electric fields to compute. An artificial conscious mind may not be so far away.

Liezel Tipper | alfa

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>