Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ETH Researchers Decipher Learning Processes in Mice

29.08.2002


Protein phosphatase 1 (PP1) belongs to a group of molecules that on the basis of earlier studies has been proposed to be a controlling factor for learning and memory. The ETH researchers produced genetically modified mice in which the activity of PP1 can be reduced at will. These animals were subjected to various learning and memory tests in one of which, the mice had to learn about various objects in a box. For this, they were trained on different schedules: without any interruption during learning or with short or long interruptions. To study how well the mice could remember the objects after learning, they were placed back into the box and one of the objects had been replaced with a novel object. If the animals explored the novel object significantly longer than the others, this was an indication that the mice remembered the familiar objects.



Protein Phosphatase 1 Makes Learning More Difficult

The tests showed that the mice with reduced PP1 and with short interruptions in the learning process achieved optimal performance that could be reached by control animals only with long interruptions. Isabelle Mansuy’s interpretation of these results is that “PP1 represents a necessary controlling factor, that is required to avoid saturation of the brain. Because the capacity of the brain is limited, it needs an active protective system”.


In order to determine whether PP1 has a general effect in learning, the research group carried out another set of experiments using a test that challenges spatial orientation. In a tub of water, the mice had to find a platform located just below the surface of the water which was made opaque. The mice with reduced PP1 needed fewer training trials to learn the platform position than the control animals.

Promoting Forgetting

Then the mice’s memory was tested. Two weeks after training the mice with normal PP1 function found the platform less easily than immediately after training. But those whose PP1 function was suppressed remembered its position surprisingly well and up to eight weeks after learning. This speaks for the fact that PP1 not only makes learning more difficult, but it also actively promotes forgetting. This effect appears to be prominent in aged individuals as those with less PP1 had improved performance. The data suggest that the suppression of PP1 may protect against memory decline. “The tests with the aged mice show that cognitive abilities may be rescued”, comments Isabelle Mansuy. This is especially interesting since it is known that aged mice have more PP1. The findings therefore indicate that learning difficulties and decline of memory in old age are not necessarily unavoidable, irreversible processes.

Prof. Isabelle Mansuy | alfa
Further information:
http://www.cc.ethz.ch/medieninfo

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>