Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny bugs in mealybugs have smaller bugs inside them

28.08.2002


Like tiny Russian dolls, the mealybugs that infest your houseplants carry bacteria inside their cells that are themselves infected with another type of bacteria. A new study by researchers at the University of California, Davis, shows that instead of spreading from bug to bug, the second set of bacteria infected the first several times in the past and are now being passed along and evolving with them.



The knowledge could be useful for working out how the insect species are related to each other, aiding pest control efforts.

Scientists had previously known that mealybugs carry two different types of bacteria. In 2001, researchers at Utah State University led by Carol von Dohlen showed that one type, called the secondary or S-endosymbiont, was actually inside the other, called the primary or P-endosymbiont. The P-endosymbionts were themselves inside specialized cells in the mealybug’s body.


The P-endosymbionts seem to benefit mealybugs by making essential amino acids not found in their diet of plant sap, said UC Davis microbiology professor Paul Baumann.

"The insect has domesticated a bacterium for its own use," Baumann said. So far, no one knows what benefits flow to the insect or the P-endosymbiont from the S-endosymbionts, he said.

Baumann, with postgraduate researcher My Lo Thao and entomology professor Penny Gullan studied DNA sequences of P-and S-endosymbionts from several different species of mealybugs to see how they were related to each other.

The P-endosymbionts are all descended from an infection of an ancestor bug 150 to 250 million years ago, Baumann said. The S-endosymbionts had infected P-endosymbionts at least four times. Since then, the bacteria have been passed down through generations of bugs and split into new species at the same time as their hosts.

Because the evolutionary trees of the bugs, their bacteria and their bacteria’s bacteria are so similar, the bacterial DNA sequences can be used to identify the insects and work out how the different species of mealybug are related to each other. Bacterial DNA is easier to work with than insect DNA, Baumann said.

Mealybugs belong to the same group of insects as aphids and psyllids. Many members of the group are significant pests on farms, gardens and houseplants.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>