Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique structures in molybdenum blue solutions reveal possible new solute state

27.08.2002


For nearly 200 years, scientists have known that the elements molybdenum and oxygen can form various large molecules, which usually impart a unique blue color to aqueous solutions. Only recently have scientists been able to isolate these molecules, but no one was able to explain their supramolecular structure in solution, until now. In a paper scheduled to appear in an upcoming issue of the Journal of the American Chemical Society (available online August 20), Tianbo Liu, a physicist at the U.S. Department of Energy’s Brookhaven National Laboratory, describes the unique "blackberry" structure, which may represent a new, stable solute state never seen before.



"The nature of ’molybdenum blue solutions’ has remained a fascinating enigma for inorganic chemists since the late 1700s and early 1800s," said Liu. In 1826, scientists discovered the first so-called polyoxomolybdate (POM) molecules with a chemical formula of Mo5O14, and realized that the electronic state of the molybdenum atoms was responsible for the blue color in solution. However, the molybdenum blue solutions contained many more complicated molecules. For a long time, scientists were unable to isolate these molecules.

Recently, however, scientists have isolated several different polyoxomolybdate molecules from various molybdenum blue solutions -- all "giant" compared to other inorganic molecules (see http://www.bnl.gov/bnlweb/pubaf/pr/2002/bnlpr_spotlights_2002.htm). Unlike other water-soluble inorganic compounds, such as common table salt (NaCl), giant POMs do not exist as single ions in water. Instead, they cluster together. But scientists were still unable to understand the structures of these aggregates, even with the help of electronic microscopes.


Now, using static and dynamic laser light scattering -- techniques formerly reserved for larger particles and polymers -- Liu has deciphered the structure of these inorganic POM clusters. "Once we found how big these molecules were [2.5-5.1 nanometers, or billionths of a meter, aggregating in clusters as large as 70-300 nanometers], we realized we could use laser light scattering to decipher the structure," said Liu.

The laser light scattering technique works similar to the way we see objects by looking at the light that bounces off of them, except that the scientists use highly focused laser light and detectors that can "see" details on a much smaller scale than the human eye.

Using these techniques Liu was able to determine the radius of the individual particles and the particle clusters, the size distribution of the clusters, how far from the center the mass of the clusters is distributed, and the mass of the clusters. Putting all these pieces together, Liu has concluded that hundreds of individual POM molecules form hollow, spherical clusters, where all of them are clustered around the surface of the sphere.

Yet this solution to the structural enigma has now opened another mystery, says Liu. "What is the new physics behind this structure?" he asks. Unlike sodium and chloride ions, which distribute evenly in solution, or larger, charged particles like DNA or proteins, which form large clusters and precipitate out, POMs form stable clusters and remain in solution.

"We believe we are seeing a new, thermodynamically stable state for solutes, where large-size, single molecules with a limited amount of charge on the surface will all form hollow spherical clusters," says Liu. The hollow vesicle structure allows the particles to remain suspended. Liu likens the new structure to a blackberry.

"We are still looking for theoretical explanations for the new solute state," says Liu. He has found that some other giant molecules with different shapes also adopt this new structure in solution, suggesting that the hollow spherical structure may be a universal state for certain solutes.

Karen McNulty Walsh | EurekAlert!

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>