Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists prove how geckos stick, unlock secrets to making artificial gecko glue

27.08.2002


Gecko foot adhering to GaAs semiconductor, demonstrating van der Waals adhesion (Photo by K. Autumn)


Forget about duct tape. Just grab the ’gecko glue’

Geckos, nature’s supreme climbers, can race up a polished glass wall at a meter per second and support their entire body weight from a wall with only a single toe. But the gecko’s remarkable climbing ability has remained a mystery since Artistotle first observed it in fourth century B.C.

Now a team of biologists and engineers has cracked the molecular secrets of the gecko’s unsurpassed sticking power--opening the door for engineers to fabricate prototypes of synthetic gecko adhesive.



"Two millennia later, we have solved the puzzle of how geckos use millions of tiny foot hairs to adhere to even molecularly smooth surfaces such as polished glass," says Kellar Autumn, lead author of an article in this week’s Proceedings of the National Academy of Sciences. Our new data prove once and for all how geckos stick."

Working at Lewis & Clark College, the University of California at Berkeley, the University of California at Santa Barbara, and Stanford University, the interdisciplinary team:

  • confirmed speculation that the gecko’s amazing climbing ability depends on weak molecular attractive forces called van der Waals forces,
  • rejected a competing model based on the adhesion chemistry of water molecules, and
  • discovered that the gecko’s adhesive depends on geometry, not surface chemistry. In other words, the size and shape of the tips of gecko foot hairs--not what they are made of - determine the gecko’s stickiness.

To verify its experimental and theoretical results, the gecko group then used its new data to fabricate prototype synthetic foot-hair tips from two different materials.

"Both artificial setal tips stuck as predicted," notes Autumn, assistant professor of biology at Lewis & Clark College in Portland, Ore. "Our initial prototypes open the door to manufacturing the first biologically inspired dry, adhesive microstructures, which can have widespread applications."

The project required an interdisciplinary team, according to Autumn. Engineers Ronald Fearing and Metin Siiti at the University of California at Berkeley built prototype synthetic gecko foot-hair tips that stick like the real thing. Engineer Jacob Israelachvili at the University of California at Santa Barbara provided the mathematics that led to the prototype’s design. Other team members include biologist Robert Full at the University of California at Berkeley and engineer Thomas Kenny of Stanford University.

Van der Waals force vs. capillary adhesion

The team tested two competing hypotheses: one based on van der Waals force and a second on capillary (water-based) adhesion.

"Our results provide the first direct experimental verification that a short-range molecular attraction called van der Waals force is definitely what makes geckos stick," Autumn emphasizes.

Van der Waals forces, named after a Dutch physicist of the late 1800s, are weak electrodynamic forces that operate over very small distances but bond to nearly any material.

Geckos have millions of setae--microscopic hairs on the bottom of their feet. These tiny setae are only as long as two diameters of a human hair. That’s 100 millionth of a meter long. Each seta ends with 1,000 even tinier pads at the tip. These tips, called spatulae, are only 200 billionths of a meter wide--below the wavelength of visible light.

"Intermolecular forces come into play because the gecko foot hairs split and allow a billion spatulae to increase surface density and come into close contact with the surface. This creates a strong adhesive force," says Autumn.

A single seta can lift the weight of an ant. A million setae, which could easily fit onto the area of a dime, could lift a 45-pound child. If a gecko used all of its setae at the same time, it could support 280 pounds.

"Our previous research suggested that van der Waals force could explain gecko adhesion. But we couldn’t rule out water adsorption or some other types of water interaction. With our new data, we can finally disprove a 30-year-old theory based on the adhesion of water molecules."

The team’s previous research ruled out two other possible forms of adhesion: suction and chemical bonding.

Geometry vs. chemistry

"The van der Waals theory predicts we can enhance adhesion--just as nature has--simply by subdividing a surface into small protrusions to increase surface density," Autumn explains. "It also suggests that a possible design principle underlies the repeated, convergent evolution of dry adhesive microstructures in geckos, anoles, skinks, and insects. Basically, Mother Nature is packing a whole bunch of tiny things into a given area."

If van der Waals adhesion determines setal force, then geometry and not the material make-up that should dictate the design of setae, the team predicted.

Jacob Israelachvili at the University of California at Santa Barbara applied a mathematical model--the Johnson-Kendall-Roberts theory of adhesion--to predict the size and shape of the setae.

Ronald Fearing at the University of California at Berkeley took the empirical results and nanofabricated synthetic foot-hair tips from two different materials.

"We confirmed it’s geometry, not surface chemistry, that enables a gecko to support its entire body with a single toe," Autumn says.

"This means we don’t need to mimic biology precisely," he explains. "We can apply the underlying principles and create a similar adhesive by breaking a surface into small bumps. These preliminary physical models provide proof that humans can fabricate synthetic gecko adhesive," he says.

"The artificial foot-hair tip model opens the door to manufacturing dry, self-cleaning adhesive that works under water and in a vacuum," according to Autumn, who foresees countless applications for synthetic gecko adhesive--from vacuum areas of clean rooms to outer space.

Jean Kempe-Ware | EurekAlert!
Further information:
http://www.lclark.edu/~autumn/gecko.html
http://www.lclark.edu/~autumn/
http://www.lclark.edu/autumn/PNAS

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>