Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequence provides insights into a pathogen’s virulence mechanism allowing for vaccine development

27.08.2002


Scientists have analyzed the complete genome sequence of an emerging human pathogen, Streptococcus agalactiae (also known as group B streptococcus or "strep B"), which is a leading cause of pneumonia and meningitis in newborns and the source of life-threatening illnesses in a growing number of adults with deficient immune systems.



The study, published this week in the on-line version of the Proceedings of the National Academy of Sciences (PNAS), not only determined the pathogen’s genetic makeup but also compared it to other isolates of the same microbe. That analysis shed light onto why S. agalactiae -- which is found in the digestive or genital tracts of many healthy people – has emerged in recent years as a more widespread and virulent cause of illness in certain adults.

"We were surprised to find so many differences among the isolates of this important pathogen," said Hervé Tettelin, an associate investigator at The Institute for Genomic Research (TIGR) who led the sequencing project. "Those differences could help explain why some strains of S. agalactiae are much more virulent than others."


Tettelin and other TIGR scientists did the comparative genomics analysis in cooperation with a research group led by Dennis L. Kasper at Harvard Medical School and a team led by Guido Grandi at the vaccine research division of Chiron, S.p.A., a biomedical company that funded the research project. The research was supported by Chiron and by grants from the National Institutes of Health.

"Completion of the genome sequence represents an important milestone in the study of this organism," said Kasper. "We anticipate that many investigators will take advantage of the S. agalactiae genome sequence to identify new virulence determinants and potential targets for vaccine development."

"We wanted the genome information to identify proteins which can be used in a vaccine," said Guido Grandi, head of Biochemistry and Molecular Biology at Chiron vaccine research. "We have used this new genomic approach already to make a type B meningococcal meningitis vaccine which is now being tested in people. So we know that the strategy works."

To find out more about the molecular reasons for the virulence of what is known as the "serotype V" isolate of S. agalactiae, the authors of the study compared that genome to the genetic makeup of other S. agalactiae strains and also with two different species of streptococci that cause human diseases: S. pneumoniae, which causes pneumonia, meningitis and septicemia, and S. pyogenes, which among other illnesses causes the "strep throat" that can lead to acute rheumatic fever.

Tettelin said the microarray experiments that compared those related genomes found numerous differences, even among strains with the same serotype – that is, the type of polysaccharides that make up the capsule (outer coat) that surrounds each bacterium. The genetic diversity indicates that S. agalactiae has mechanisms (including acquisition, duplication and re-assortment of genes) that have allowed it "to adapt to new environmental niches and to emerge as a major human pathogen."

They also said in silico (computer) analysis showed that S. agalactiae’s genome differed from that of other streptococci in several of the microbe’s metabolic pathways and in related transport systems through the bacterium’s cell membrane. Those differences probably relate to how S. agalactiae adapted to distinct niches in its human and bovine hosts, the paper suggests. The researchers also found genes unique to S. agalactiae that likely play a role in colonization or in disease: genes related to surface proteins, capsule synthesis, and the hemolysin enzyme that clears the path for microbes to invade other parts of the body and cause disease.

The researchers chose to sequence type V because it is the most common capsule type that is associated with invasive infection among adults other than pregnant women. And the emergence of type V strains over the last decade appears to parallel the increase in S. algalactiae-related diseases among those adults.

While S. agalactiae is normally a harmless organism when it colonizes the human gastrointestinal or genital tracts, the microbe can cause life-threatening invasive infection in susceptible hosts, which include newborn infants, pregnant women, and adults with underlying chronic illnesses. The number of neonatal S. agalactiae infections has dropped since physicians began prescribing antibiotics during delivery for high-risk pregnant women in 1996, but invasive infections in adults with deficient immune systems have increased.

S. agalactiae has a circular genome of about 2.16 million base pairs. Researchers predicted that there are 2,176 genes in that genome, and about 65% of the proteins expressed by those genes were of known function. The authors of the study found that the three streptococcal species shared 1,060 genes--about half of their genes-- but that 683 genes are unique to S. agalactiae.

"This study is important because it sheds light on the virulence mechanism of one of the last major human pathogens whose genome had not yet been sequenced," said Claire M. Fraser, TIGR’s president. "This should help researchers find vaccine candidates or drug targets to fight a pathogen with broad impact on human health."

Debbie Lebkicher | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Life Sciences:

nachricht High-Speed Locomotion Neurons Found in the Brainstem
24.10.2017 | Universität Basel

nachricht Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise
24.10.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>