Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequence provides insights into a pathogen’s virulence mechanism allowing for vaccine development

27.08.2002


Scientists have analyzed the complete genome sequence of an emerging human pathogen, Streptococcus agalactiae (also known as group B streptococcus or "strep B"), which is a leading cause of pneumonia and meningitis in newborns and the source of life-threatening illnesses in a growing number of adults with deficient immune systems.



The study, published this week in the on-line version of the Proceedings of the National Academy of Sciences (PNAS), not only determined the pathogen’s genetic makeup but also compared it to other isolates of the same microbe. That analysis shed light onto why S. agalactiae -- which is found in the digestive or genital tracts of many healthy people – has emerged in recent years as a more widespread and virulent cause of illness in certain adults.

"We were surprised to find so many differences among the isolates of this important pathogen," said Hervé Tettelin, an associate investigator at The Institute for Genomic Research (TIGR) who led the sequencing project. "Those differences could help explain why some strains of S. agalactiae are much more virulent than others."


Tettelin and other TIGR scientists did the comparative genomics analysis in cooperation with a research group led by Dennis L. Kasper at Harvard Medical School and a team led by Guido Grandi at the vaccine research division of Chiron, S.p.A., a biomedical company that funded the research project. The research was supported by Chiron and by grants from the National Institutes of Health.

"Completion of the genome sequence represents an important milestone in the study of this organism," said Kasper. "We anticipate that many investigators will take advantage of the S. agalactiae genome sequence to identify new virulence determinants and potential targets for vaccine development."

"We wanted the genome information to identify proteins which can be used in a vaccine," said Guido Grandi, head of Biochemistry and Molecular Biology at Chiron vaccine research. "We have used this new genomic approach already to make a type B meningococcal meningitis vaccine which is now being tested in people. So we know that the strategy works."

To find out more about the molecular reasons for the virulence of what is known as the "serotype V" isolate of S. agalactiae, the authors of the study compared that genome to the genetic makeup of other S. agalactiae strains and also with two different species of streptococci that cause human diseases: S. pneumoniae, which causes pneumonia, meningitis and septicemia, and S. pyogenes, which among other illnesses causes the "strep throat" that can lead to acute rheumatic fever.

Tettelin said the microarray experiments that compared those related genomes found numerous differences, even among strains with the same serotype – that is, the type of polysaccharides that make up the capsule (outer coat) that surrounds each bacterium. The genetic diversity indicates that S. agalactiae has mechanisms (including acquisition, duplication and re-assortment of genes) that have allowed it "to adapt to new environmental niches and to emerge as a major human pathogen."

They also said in silico (computer) analysis showed that S. agalactiae’s genome differed from that of other streptococci in several of the microbe’s metabolic pathways and in related transport systems through the bacterium’s cell membrane. Those differences probably relate to how S. agalactiae adapted to distinct niches in its human and bovine hosts, the paper suggests. The researchers also found genes unique to S. agalactiae that likely play a role in colonization or in disease: genes related to surface proteins, capsule synthesis, and the hemolysin enzyme that clears the path for microbes to invade other parts of the body and cause disease.

The researchers chose to sequence type V because it is the most common capsule type that is associated with invasive infection among adults other than pregnant women. And the emergence of type V strains over the last decade appears to parallel the increase in S. algalactiae-related diseases among those adults.

While S. agalactiae is normally a harmless organism when it colonizes the human gastrointestinal or genital tracts, the microbe can cause life-threatening invasive infection in susceptible hosts, which include newborn infants, pregnant women, and adults with underlying chronic illnesses. The number of neonatal S. agalactiae infections has dropped since physicians began prescribing antibiotics during delivery for high-risk pregnant women in 1996, but invasive infections in adults with deficient immune systems have increased.

S. agalactiae has a circular genome of about 2.16 million base pairs. Researchers predicted that there are 2,176 genes in that genome, and about 65% of the proteins expressed by those genes were of known function. The authors of the study found that the three streptococcal species shared 1,060 genes--about half of their genes-- but that 683 genes are unique to S. agalactiae.

"This study is important because it sheds light on the virulence mechanism of one of the last major human pathogens whose genome had not yet been sequenced," said Claire M. Fraser, TIGR’s president. "This should help researchers find vaccine candidates or drug targets to fight a pathogen with broad impact on human health."

Debbie Lebkicher | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>