Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CWRU scientists reveal how magnesium works on ion channels important for regulating blood pressure

23.08.2002


Researchers at Case Western Reserve University report in the August 22 issue of Nature how magnesium activates microscopic ion channels in the membrane of a cell. These particular ion channels are important in controlling blood pressure. Scientists, the researchers say, can use this new finding in the quest to understand how magnesium helps to decrease blood pressure and also treat heart failure and stroke.



Calcium activated potassium channels are important microscopic pathways in the cell membrane that relax the smooth muscle in a blood vessel, according to the researchers. They also modify electrical impulses, which travel in nerve cells throughout the brain.

"Research of this kind may help to understand why some therapies such as magnesium supplements are important in the prevention and management of hypertension or heart failure," said Jianmin Cui, the lead researcher and assistant professor in the department of biomedical engineering at CWRU. "Along with some other groups, we have discovered that when magnesium is applied to calcium-activated potassium channels, these channels will open. We know from literature that the opening of these channels can reduce blood pressure."


The Nature article ("Mechanism of magnesium activation of calcium activated potassium channels") was written by Jianmin Cui, the principal researcher, who was assisted by Jingyi Shi, senior researcher in the department of biomedical engineering; Gayathri Krishnamoorty and Lei Hu, graduate students in the department of biomedical engineering; and Neha Chaturvedi and Dina Harilal, undergraduates students. The team is collaborating with Yanwu Yang and Jun Qin, structural biologists at the Cleveland Clinic Foundation. The research is supported by a $1 million grant from the National Institutes of Health, Heart Lung and Blood Institute.

"The completion of stage one of the project is due to the combination of state-of-the-art bioelectric facilities and advanced structural biology results," Cui said. "The collaboration between the department of biomedical engineering and The Cleveland Clinic Foundation was key."

CWRU researchers used cloned ion channel DNA to express the ion channels in frog eggs. The ion channels are proteins made of various amino acids; the researchers mutated some of these amino acids and recorded functional change that resulted from the mutations.

Hypertension, Cui explained, results from the contraction of blood vessels, which causes an increase in blood pressure. "The diameter of blood vessels is controlled by smooth muscle cells around them," he said. "When magnesium reaches these potassium channels, the channels open causing blood vessels to dilate and therefore reduce hypertension."

According to the National Health and Nutrition Examination Survey conducted between 1988 and 1994 by The National High Blood Pressure Education Program, an estimated 42.3 million people in the U.S had hypertension. Doctors had told an additional 7.7 million on two or more occasions that they had hypertension, which gives a total of 50 million hypertensives.

"Our research is basic science, however, we hope that the results can help to explain why some treatments would work and provide rationale for development of new drugs for hypertension," Cui said.

Marci E. Hersh | EurekAlert!

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>