Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CWRU scientists reveal how magnesium works on ion channels important for regulating blood pressure

23.08.2002


Researchers at Case Western Reserve University report in the August 22 issue of Nature how magnesium activates microscopic ion channels in the membrane of a cell. These particular ion channels are important in controlling blood pressure. Scientists, the researchers say, can use this new finding in the quest to understand how magnesium helps to decrease blood pressure and also treat heart failure and stroke.



Calcium activated potassium channels are important microscopic pathways in the cell membrane that relax the smooth muscle in a blood vessel, according to the researchers. They also modify electrical impulses, which travel in nerve cells throughout the brain.

"Research of this kind may help to understand why some therapies such as magnesium supplements are important in the prevention and management of hypertension or heart failure," said Jianmin Cui, the lead researcher and assistant professor in the department of biomedical engineering at CWRU. "Along with some other groups, we have discovered that when magnesium is applied to calcium-activated potassium channels, these channels will open. We know from literature that the opening of these channels can reduce blood pressure."


The Nature article ("Mechanism of magnesium activation of calcium activated potassium channels") was written by Jianmin Cui, the principal researcher, who was assisted by Jingyi Shi, senior researcher in the department of biomedical engineering; Gayathri Krishnamoorty and Lei Hu, graduate students in the department of biomedical engineering; and Neha Chaturvedi and Dina Harilal, undergraduates students. The team is collaborating with Yanwu Yang and Jun Qin, structural biologists at the Cleveland Clinic Foundation. The research is supported by a $1 million grant from the National Institutes of Health, Heart Lung and Blood Institute.

"The completion of stage one of the project is due to the combination of state-of-the-art bioelectric facilities and advanced structural biology results," Cui said. "The collaboration between the department of biomedical engineering and The Cleveland Clinic Foundation was key."

CWRU researchers used cloned ion channel DNA to express the ion channels in frog eggs. The ion channels are proteins made of various amino acids; the researchers mutated some of these amino acids and recorded functional change that resulted from the mutations.

Hypertension, Cui explained, results from the contraction of blood vessels, which causes an increase in blood pressure. "The diameter of blood vessels is controlled by smooth muscle cells around them," he said. "When magnesium reaches these potassium channels, the channels open causing blood vessels to dilate and therefore reduce hypertension."

According to the National Health and Nutrition Examination Survey conducted between 1988 and 1994 by The National High Blood Pressure Education Program, an estimated 42.3 million people in the U.S had hypertension. Doctors had told an additional 7.7 million on two or more occasions that they had hypertension, which gives a total of 50 million hypertensives.

"Our research is basic science, however, we hope that the results can help to explain why some treatments would work and provide rationale for development of new drugs for hypertension," Cui said.

Marci E. Hersh | EurekAlert!

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>