Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CWRU scientists reveal how magnesium works on ion channels important for regulating blood pressure

23.08.2002


Researchers at Case Western Reserve University report in the August 22 issue of Nature how magnesium activates microscopic ion channels in the membrane of a cell. These particular ion channels are important in controlling blood pressure. Scientists, the researchers say, can use this new finding in the quest to understand how magnesium helps to decrease blood pressure and also treat heart failure and stroke.



Calcium activated potassium channels are important microscopic pathways in the cell membrane that relax the smooth muscle in a blood vessel, according to the researchers. They also modify electrical impulses, which travel in nerve cells throughout the brain.

"Research of this kind may help to understand why some therapies such as magnesium supplements are important in the prevention and management of hypertension or heart failure," said Jianmin Cui, the lead researcher and assistant professor in the department of biomedical engineering at CWRU. "Along with some other groups, we have discovered that when magnesium is applied to calcium-activated potassium channels, these channels will open. We know from literature that the opening of these channels can reduce blood pressure."


The Nature article ("Mechanism of magnesium activation of calcium activated potassium channels") was written by Jianmin Cui, the principal researcher, who was assisted by Jingyi Shi, senior researcher in the department of biomedical engineering; Gayathri Krishnamoorty and Lei Hu, graduate students in the department of biomedical engineering; and Neha Chaturvedi and Dina Harilal, undergraduates students. The team is collaborating with Yanwu Yang and Jun Qin, structural biologists at the Cleveland Clinic Foundation. The research is supported by a $1 million grant from the National Institutes of Health, Heart Lung and Blood Institute.

"The completion of stage one of the project is due to the combination of state-of-the-art bioelectric facilities and advanced structural biology results," Cui said. "The collaboration between the department of biomedical engineering and The Cleveland Clinic Foundation was key."

CWRU researchers used cloned ion channel DNA to express the ion channels in frog eggs. The ion channels are proteins made of various amino acids; the researchers mutated some of these amino acids and recorded functional change that resulted from the mutations.

Hypertension, Cui explained, results from the contraction of blood vessels, which causes an increase in blood pressure. "The diameter of blood vessels is controlled by smooth muscle cells around them," he said. "When magnesium reaches these potassium channels, the channels open causing blood vessels to dilate and therefore reduce hypertension."

According to the National Health and Nutrition Examination Survey conducted between 1988 and 1994 by The National High Blood Pressure Education Program, an estimated 42.3 million people in the U.S had hypertension. Doctors had told an additional 7.7 million on two or more occasions that they had hypertension, which gives a total of 50 million hypertensives.

"Our research is basic science, however, we hope that the results can help to explain why some treatments would work and provide rationale for development of new drugs for hypertension," Cui said.

Marci E. Hersh | EurekAlert!

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>