Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL gathers most complete protein map of "world’s toughest bacterium"

22.08.2002


Scientists at the Department of Energy’s Pacific Northwest National Laboratory have obtained the most complete protein coverage of any organism to date with the study of a radiation-resistant microbe known to survive extreme environments. This research potentially could open up new opportunities to harness this microorganism, called Deinococcus radiodurans, for bioremediation.



A study published in the Aug. 20 issue of the Proceedings of the National Academy of Sciences observed a 61 percent coverage of the microbe’s possible predicted set of proteins, or its proteome. This is the most complete proteome reporting to date of any organism. (The proteome is the collection of proteins expressed by a cell under a specific set of conditions at a specific time.) PNNL scientists identified more than 1,900 proteins in D. radiodurans.

Studying the amount of each protein present at any time has become more important as scientists attempt to learn which proteins are involved in important cellular functions. DOE’s Microbial Genome Program, an element of the Genomes to Life Program, provided the genomic information for various microorganisms, including D. radiodurans, and developed ways to predict the set of possible proteins, which hold the key to why and how these microbes carry out different functions.


D. radiodurans is of interest because of its potential to degrade radioactive materials, its ability to withstand high levels of radiation and its impressive DNA repair capabilities. The Guinness Book of World Records once called it the world’s toughest bacterium.

"We’ve been able to see more of the proteins, especially those proteins that exist in small quantities," said Mary Lipton, PNNL senior research scientist and lead author of the PNAS paper. "Because our coverage is unprecedented, we’re now able to provide biologists with protein-level information they never had access to before."

To identify proteins involved in various functions, PNNL researchers exposed D. radiodurans to several stresses and environments: heat shock; cold shock; exposure to chemicals that damage DNA such as trichloroethylene; exposure to ionizing radiation; and starvation. They were able to identify many proteins previously only hypothesized to exist on the basis of DNA information and also proteins that seemed to have little function. New proteins that became active only during a specific condition also were identified, as were proteins that appeared to exist all the time.

To achieve this unprecedented coverage, researchers used a new high-throughput mass spectrometer based on Fourier-transform ion cyclotron resonance developed at PNNL. This instrumentation allows scientists to identify thousands of proteins within hours. The system relies on a two-step process that first uses tandem mass spectrometry to identify biomarkers for each protein.

"We’ve not only identified the proteins, we have validated our results by using two mass spectrometry techniques," said Richard D. Smith, PNNL principal investigator.

"Once we’ve identified the protein biomarkers, then we never have to repeat the identification step, thereby speeding up our experiments. As a result we not only have a much more complete view of the proteome than existed previously, but we also can follow changes to it much faster."

The experiments were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE scientific user facility supported by the Office of Biological and Environmental Research and located at PNNL.

Other authors involved in the research came from Louisiana State University and the Uniformed Services University of the Health Sciences in Bethesda, Md.

Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov.

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.

Staci Maloof | EurekAlert!

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>