Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL gathers most complete protein map of "world’s toughest bacterium"

22.08.2002


Scientists at the Department of Energy’s Pacific Northwest National Laboratory have obtained the most complete protein coverage of any organism to date with the study of a radiation-resistant microbe known to survive extreme environments. This research potentially could open up new opportunities to harness this microorganism, called Deinococcus radiodurans, for bioremediation.



A study published in the Aug. 20 issue of the Proceedings of the National Academy of Sciences observed a 61 percent coverage of the microbe’s possible predicted set of proteins, or its proteome. This is the most complete proteome reporting to date of any organism. (The proteome is the collection of proteins expressed by a cell under a specific set of conditions at a specific time.) PNNL scientists identified more than 1,900 proteins in D. radiodurans.

Studying the amount of each protein present at any time has become more important as scientists attempt to learn which proteins are involved in important cellular functions. DOE’s Microbial Genome Program, an element of the Genomes to Life Program, provided the genomic information for various microorganisms, including D. radiodurans, and developed ways to predict the set of possible proteins, which hold the key to why and how these microbes carry out different functions.


D. radiodurans is of interest because of its potential to degrade radioactive materials, its ability to withstand high levels of radiation and its impressive DNA repair capabilities. The Guinness Book of World Records once called it the world’s toughest bacterium.

"We’ve been able to see more of the proteins, especially those proteins that exist in small quantities," said Mary Lipton, PNNL senior research scientist and lead author of the PNAS paper. "Because our coverage is unprecedented, we’re now able to provide biologists with protein-level information they never had access to before."

To identify proteins involved in various functions, PNNL researchers exposed D. radiodurans to several stresses and environments: heat shock; cold shock; exposure to chemicals that damage DNA such as trichloroethylene; exposure to ionizing radiation; and starvation. They were able to identify many proteins previously only hypothesized to exist on the basis of DNA information and also proteins that seemed to have little function. New proteins that became active only during a specific condition also were identified, as were proteins that appeared to exist all the time.

To achieve this unprecedented coverage, researchers used a new high-throughput mass spectrometer based on Fourier-transform ion cyclotron resonance developed at PNNL. This instrumentation allows scientists to identify thousands of proteins within hours. The system relies on a two-step process that first uses tandem mass spectrometry to identify biomarkers for each protein.

"We’ve not only identified the proteins, we have validated our results by using two mass spectrometry techniques," said Richard D. Smith, PNNL principal investigator.

"Once we’ve identified the protein biomarkers, then we never have to repeat the identification step, thereby speeding up our experiments. As a result we not only have a much more complete view of the proteome than existed previously, but we also can follow changes to it much faster."

The experiments were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE scientific user facility supported by the Office of Biological and Environmental Research and located at PNNL.

Other authors involved in the research came from Louisiana State University and the Uniformed Services University of the Health Sciences in Bethesda, Md.

Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov.

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.

Staci Maloof | EurekAlert!

More articles from Life Sciences:

nachricht Desert ants cannot be fooled
23.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water cooling for the Earth's crust

23.11.2017 | Earth Sciences

Nano-watch has steady hands

23.11.2017 | Physics and Astronomy

Batteries with better performance and improved safety

23.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>