Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL gathers most complete protein map of "world’s toughest bacterium"

22.08.2002


Scientists at the Department of Energy’s Pacific Northwest National Laboratory have obtained the most complete protein coverage of any organism to date with the study of a radiation-resistant microbe known to survive extreme environments. This research potentially could open up new opportunities to harness this microorganism, called Deinococcus radiodurans, for bioremediation.



A study published in the Aug. 20 issue of the Proceedings of the National Academy of Sciences observed a 61 percent coverage of the microbe’s possible predicted set of proteins, or its proteome. This is the most complete proteome reporting to date of any organism. (The proteome is the collection of proteins expressed by a cell under a specific set of conditions at a specific time.) PNNL scientists identified more than 1,900 proteins in D. radiodurans.

Studying the amount of each protein present at any time has become more important as scientists attempt to learn which proteins are involved in important cellular functions. DOE’s Microbial Genome Program, an element of the Genomes to Life Program, provided the genomic information for various microorganisms, including D. radiodurans, and developed ways to predict the set of possible proteins, which hold the key to why and how these microbes carry out different functions.


D. radiodurans is of interest because of its potential to degrade radioactive materials, its ability to withstand high levels of radiation and its impressive DNA repair capabilities. The Guinness Book of World Records once called it the world’s toughest bacterium.

"We’ve been able to see more of the proteins, especially those proteins that exist in small quantities," said Mary Lipton, PNNL senior research scientist and lead author of the PNAS paper. "Because our coverage is unprecedented, we’re now able to provide biologists with protein-level information they never had access to before."

To identify proteins involved in various functions, PNNL researchers exposed D. radiodurans to several stresses and environments: heat shock; cold shock; exposure to chemicals that damage DNA such as trichloroethylene; exposure to ionizing radiation; and starvation. They were able to identify many proteins previously only hypothesized to exist on the basis of DNA information and also proteins that seemed to have little function. New proteins that became active only during a specific condition also were identified, as were proteins that appeared to exist all the time.

To achieve this unprecedented coverage, researchers used a new high-throughput mass spectrometer based on Fourier-transform ion cyclotron resonance developed at PNNL. This instrumentation allows scientists to identify thousands of proteins within hours. The system relies on a two-step process that first uses tandem mass spectrometry to identify biomarkers for each protein.

"We’ve not only identified the proteins, we have validated our results by using two mass spectrometry techniques," said Richard D. Smith, PNNL principal investigator.

"Once we’ve identified the protein biomarkers, then we never have to repeat the identification step, thereby speeding up our experiments. As a result we not only have a much more complete view of the proteome than existed previously, but we also can follow changes to it much faster."

The experiments were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE scientific user facility supported by the Office of Biological and Environmental Research and located at PNNL.

Other authors involved in the research came from Louisiana State University and the Uniformed Services University of the Health Sciences in Bethesda, Md.

Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov.

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.

Staci Maloof | EurekAlert!

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>