Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL gathers most complete protein map of "world’s toughest bacterium"

22.08.2002


Scientists at the Department of Energy’s Pacific Northwest National Laboratory have obtained the most complete protein coverage of any organism to date with the study of a radiation-resistant microbe known to survive extreme environments. This research potentially could open up new opportunities to harness this microorganism, called Deinococcus radiodurans, for bioremediation.



A study published in the Aug. 20 issue of the Proceedings of the National Academy of Sciences observed a 61 percent coverage of the microbe’s possible predicted set of proteins, or its proteome. This is the most complete proteome reporting to date of any organism. (The proteome is the collection of proteins expressed by a cell under a specific set of conditions at a specific time.) PNNL scientists identified more than 1,900 proteins in D. radiodurans.

Studying the amount of each protein present at any time has become more important as scientists attempt to learn which proteins are involved in important cellular functions. DOE’s Microbial Genome Program, an element of the Genomes to Life Program, provided the genomic information for various microorganisms, including D. radiodurans, and developed ways to predict the set of possible proteins, which hold the key to why and how these microbes carry out different functions.


D. radiodurans is of interest because of its potential to degrade radioactive materials, its ability to withstand high levels of radiation and its impressive DNA repair capabilities. The Guinness Book of World Records once called it the world’s toughest bacterium.

"We’ve been able to see more of the proteins, especially those proteins that exist in small quantities," said Mary Lipton, PNNL senior research scientist and lead author of the PNAS paper. "Because our coverage is unprecedented, we’re now able to provide biologists with protein-level information they never had access to before."

To identify proteins involved in various functions, PNNL researchers exposed D. radiodurans to several stresses and environments: heat shock; cold shock; exposure to chemicals that damage DNA such as trichloroethylene; exposure to ionizing radiation; and starvation. They were able to identify many proteins previously only hypothesized to exist on the basis of DNA information and also proteins that seemed to have little function. New proteins that became active only during a specific condition also were identified, as were proteins that appeared to exist all the time.

To achieve this unprecedented coverage, researchers used a new high-throughput mass spectrometer based on Fourier-transform ion cyclotron resonance developed at PNNL. This instrumentation allows scientists to identify thousands of proteins within hours. The system relies on a two-step process that first uses tandem mass spectrometry to identify biomarkers for each protein.

"We’ve not only identified the proteins, we have validated our results by using two mass spectrometry techniques," said Richard D. Smith, PNNL principal investigator.

"Once we’ve identified the protein biomarkers, then we never have to repeat the identification step, thereby speeding up our experiments. As a result we not only have a much more complete view of the proteome than existed previously, but we also can follow changes to it much faster."

The experiments were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE scientific user facility supported by the Office of Biological and Environmental Research and located at PNNL.

Other authors involved in the research came from Louisiana State University and the Uniformed Services University of the Health Sciences in Bethesda, Md.

Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov.

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.

Staci Maloof | EurekAlert!

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>