Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joint Genome Institute to sequence key African frog genome

21.08.2002


DNA of Xenopus tropicalis will provide new clues to vertebrate development



In their continuing search for new clues to how human genes function and how vertebrates develop and evolve, researchers at the U.S. Department of Energy’s Joint Genome Institute (JGI) are gearing up to map the DNA of a diminutive, fast-growing African frog named Xenopus tropicalis.

Frogs have long been a favorite subject for biologists because their growth from eggs to tadpoles to mature organisms sheds light on the processes that guide the development of cells and organs. X. tropicalis was chosen for sequencing because its genetic structure is similar to humans but smaller and easier to decode than that of other frog species.


"Frogs and other amphibians occupy a key evolutionary position between mammals and fish, the organisms whose genomes have been or are currently being sequenced," said Paul Richardson, the JGI project manager. "The publicly available Xenopus genome sequence will be a scientifically valuable resource for the research community."

"Until now, experiments with frogs have shown us how vertebrates develop from an egg to an organism," said Richard Harland, a developmental biologist at the University of California, Berkeley, and an early advocate of the project. "But we’re looking forward to new possibilities from the genome sequence.

"Using a compare-and-contrast approach with the human sequence, and the experiments that are possible in frogs, we’ll definitely make real progress in decoding the human genome," Harland said.

Added Robert Grainger, a leading Xenopus researcher from the University of Virginia: "Studies on frogs have long been instrumental in understanding such fundamental processes as cell division and how cells in the embryo communicate with one another. Because these are the processes that go awry when birth defects occur or cancer strikes, we must seek a better understanding of them. This genome project will provide a major step in that direction."

The JGI, one of the largest public genome sequencing centers in the world, is operated jointly by three DOE national laboratories managed by the University of California – Lawrence Berkeley and Lawrence Livermore in California, and Los Alamos in New Mexico. In addition to the Xenopus project, the JGI has genomics programs focused on microbes, fungi, fish, and plants.

The Institute brings together the research capabilities of the national labs and helps to convene multi-national teams that undertake large-scale genomic projects. This collaborative approach was used recently to sequence the genome of the pufferfish Fugu rubripes. Researchers reported last month that by comparing the Fugu sequence with the results of the Human Genome Project, they were able to predict the presence of nearly 1,000 previously unidentified human genes.

For the Xenopus project, the JGI convened an advisory board to organize and disseminate information about the sequencing effort. Members include researchers from the National Institutes of Health (NIH), UC Berkeley, UC Irvine, the University of Virginia, the Institute for Systems Biology in Seattle, Children’s Hospital in Cincinnati, and the University of Calgary in Canada, as well as from the United Kingdom and Japan. Steven L. Klein, chair of a Xenopus working group at NIH’s National Institute of Child Health and Human Development, noted that his agency will provide additional resources to NIH-sponsored labs to add data for this collaborative genome project.

JGI is a leader in sequencing organisms of crucial interest to researchers around the world. For the Human Genome Project, JGI sequenced human chromosomes 5, 16, and 19, which together constitute 11 percent of the human genome. JGI sequenced mouse DNA related to human chromosome 19 to illuminate the molecular evolutionary history of the two species. JGI has also sequenced the environmentally important white rot fungus (Phanerochaete chrysosporium) and nearly 50 important microorganisms.


With its main headquarters and Production Genomics Facility in Walnut Creek, JGI employs about 240 people and has programs in genomic sequencing, computation, functional genomics, genomic diversity, and new technology development. Funding is provided predominantly by the Department of Energy’s Office of Science, Office of Biological and Environmental Research. Other agencies that have contributed to funding JGI include DOE’s National Nuclear Security Administration, NIH, the National Science Foundation, and the U.S. Department of Agriculture.

Additional information and progress reports on JGI projects, including daily updates of sequence information and assembly statistics, are available at www.jgi.doe.gov. Xenopus annotation workshops for members of the research community will be held at the JGI’s facility in Walnut Creek.

Charles Osolin | EurekAlert!
Further information:
http://www.llnl.gov/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>