Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how herpes tricks the immune system

21.08.2002


Herpes viruses enter the body and hide away in cells, often re-emerging later to cause illnesses such as shingles, genital herpes and cancer. How these viruses evade the immune system remains poorly understood, but researchers at Washington University School of Medicine in St. Louis discovered that a mouse herpes virus uses molecules that mimic a cell’s own proteins to help thwart an immune attack.



The findings also suggest that a branch of the immune system known as the complement system may play a more important role in controlling herpes virus infections than previously thought. The study is published in the August issue of the journal Immunity.

"These findings reveal another molecular mechanism by which viruses evade the immune system," says study leader Herbert W. Virgin, M.D., Ph.D., professor of pathology and immunology and of molecular microbiology. "By targeting this viral protein or by manipulating the complement system, perhaps someday we can develop better treatments for herpes virus infections."


The complement system consists of about 20 different proteins that are transported in the bloodstream. When activated by certain disease-causing organisms, the proteins unite and collect on viruses or on the membranes of virus-infected cells and kill them by punching holes in the membranes. To help prevent the inadvertent and dangerous triggering of this complement reaction, healthy cells produce molecules known as regulators of complement activation (RCA).

Virgin’s team found that one type of herpes virus makes its own version of RCA to trick the immune system and evade destruction by complement, but that the RCA mimic proteins help the virus only during acute infection.

The researchers used a mouse virus called gamma-herpes virus 68 (gHV68), which is similar to Epstein Barr virus and the herpes virus that causes Kaposi’s sarcoma, a cancer that occurs in some people with immune deficiency. The team engineered a mutant strain of the mouse virus that lacked the RCA mimic protein. They compared the effects of the normal virus and the mutant virus on normal mice versus mice that lacked a key complement protein, C3.

The researchers found that viruses lacking an RCA mimic were far less virulent than the normal virus: It took 100 times more of the mutant virus to cause disease in healthy mice compared to normal virus. The mutant virus also grew 27 times slower than normal, and it failed to spread to other organs during acute infection. This showed that the RCA mimic proteins were necessary for the virus to thrive.

Next, the researchers tested the mutant virus in mice lacking C3. In this case, the mutant virus was just as virulent as normal viruses in normal mice. Without C3 in the infected animal, the virus did not need to disguise itself with RCA in order to thrive. This implies that, in normal mice, the mimic protein enabled the virus to escape detection by the complement system.

The investigators then explored the role of complement and RCA during persistent and chronic infections. Historically, scientists believed that the body uses the complement system only during the initial, or acute, phase of herpes virus infection. Chronic stages of infection, they thought, were fought by immune system components such as T cells, B cells and interferons.

Persistent infection occurs when the virus continues to replicate beyond the period of acute infection. It is most clearly seen when the immune system is seriously impaired. Latent infection occurs when the virus resides inactively in cells, but it can be reactivated to generate infectious virus.

The researchers found that while healthy mice infected with gHV68 rarely showed signs of persistent infection, this condition readily occurred in C3-deficient mice. This was evidence that complement helped control this phase of infection.

They also discovered that complement helps control latent infection. Using special tests that reactivate latent viruses, the team found that three to five times more virus could be reactivated in C3-deficient mice than in normal mice.

"Our findings explicitly show that complement plays a role during persistent and latent infection, and that was unexpected," says Virgin. "They also emphasize that we can’t study a viral protein during just one part of a virus’s life cycle and assume we understand the function of that protein. It’s important to look at it during all phases of infection."


###
Kapadia SB, Levine B, Speck SH, Virgin HW IV. Critical role of complement and viral evasion of complement in acute, persistent, and latent g-herpes virus infection. Immunity, 17, 1-20, August 2002.

Funding from the National Institute of Allergy and Infectious Diseases, the National Cancer Institute and a training grant from the Cancer Research Institute supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>