Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene trigger for pancreas formation identified

19.08.2002


Before the pancreas is a pancreas, it is just two tiny bumps--two groups of cells sprouting from a central tube. What makes these cells bud off from the main group? How do they go on to make all the cell types of the mature pancreas? These are the kinds of questions that drive the research efforts of Vanderbilt developmental biologist Chris Wright and colleagues. The answers could pave the way toward limitless supplies of pancreatic cells for transplantation therapy of diabetes.



"It has been established that islet cell transplantation can solve the diabetes problem," said Wright, referring to studies carried out in Edmonton, Canada and elsewhere. "The problem is having a suitable and sufficient source of transplantation material."

Donated pancreases and the technical expertise required to isolate functioning islet cells--the pancreatic cells that produce insulin--will not meet the demand, Wright said. An alternative, he said, is to produce insulin-secreting cells from embryonic or other stem cells.


"If we can identify the factors that determine pancreatic cell fate," he said, "we might be able to coerce embryonic stem cells or other cells to turn into pancreas."

One of these factors is a gene called PTF1p48 (p48 for short). Wright and colleagues reported in Nature Genetics, published online August 19, that p48 is required for the development of the pancreas, both its exocrine cells--those that secrete digestive enzymes--and its endocrine cells--those that secrete insulin and other hormones.

Wright’s team used what one reviewer of the paper called "a novel and powerful cell marking method" to track cells in the mouse that express the p48 gene, starting very early in embryonic pancreas formation. The method relied on genetic manipulations to introduce an inherited marker--a blue color that could be followed in cells that turned on the p48 gene, and in all the cells that came from those cells.

A simple way to think about the technique, Wright said, is to picture the crowd at a football stadium and to imagine that somewhere in the stadium, for a limited time, a man gave away unique blue hats and asked people to wear them. "Now we can follow the people who got hats, no matter where they go," Wright said. "Whether they go to get a hot dog or leave the stadium entirely, we can find them."

Using the technique, the investigators found and followed the cells that turned on the p48 gene--as if these cells were wearing blue hats. The cells that bud out to form the pancreas turned on p48; they were blue. And the cells of the mature pancreas were blue too.

Wright’s team combined this powerful method for tracing a cell’s lineage with gene knockout technology. They engineered mice to lack the p48 gene, causing abnormal development of the pancreas. Cells in these knockout mice still try to turn on the p48 gene, so the investigators were able to follow the blue marker in these cells.

They found that, with p48 absent, the cells that normally express p48 and go on to form pancreas became intestinal cells instead. And they became all types of cells in the intestines, including intestinal stem cells. It is the first time, to Wright’s knowledge, that investigators have tracked what happens to cells when a gene that they normally turn on is missing.

"The really important point is that these cells don’t just die; they go on to behave as a different tissue," he said. "That is very powerful information when you are thinking about manipulating stem cells in the laboratory. Because you know now--at least for some genes--that you can put them in or take them away and you don’t kill the cells; you manipulate what they’re going to become. And that’s exactly what we want to do therapeutically."

Wright believes that linking lineage tracing and gene knockouts will become increasingly common. "It adds extra depth to understanding cellular behavior," he said. He is also enthusiastic about fluorescent variants of the lineage tracing technique that will allow investigators to follow living cells as they change fates.

And he is excited about his group’s ongoing studies with p48. The team is currently introducing the p48 gene into cells that would normally become intestinal cells, to see if they change their fate and become pancreatic cells instead.

"If we can do that," he said, "we’re a big step further towards knowing that p48 is one of the gene triggers that you might want to put into an embryonic or other stem cell to make pancreas."

Those "other" stem cells could be circulating blood stem cells or even cells within the pancreas that could potentially regenerate the organ, so-called pancreatic stem cells. They appear to exist in mice, which are capable of pancreatic regeneration, Wright said. It is not so far-fetched, he added, to believe that human beings harbor such cells. Identifying the genes, such as p48, expressed by pancreatic progenitor cells forwards efforts to find pancreatic stem cells.


###
Wright’s Nature Genetics co-authors are: Yoshiya Kawaguchi, Bonnie Cooper, Maureen Gannon, Michael Ray, and Raymond J. MacDonald.


John Howser | EurekAlert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>