Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene research warning for commercial fishing

13.08.2002


Commercial fishing practices can reduce genetic diversity in fish populations, possibly threatening their productivity and adaptability to environmental change, new research has found.



An Australian zoologist now at the University of Melbourne, along with colleagues from the United Kingdom and New Zealand, was the first to record a decline in the genetic diversity of a commercially exploited marine species.

Their findings, published in the latest volume of the "Proceedings of the National Academy of Sciences", shout a warning that could force a rethink to current fisheries management and the research focus into sustainable fishing.


Dr Greg Adcock analysed the DNA found in scales preserved from two populations of New Zealand snapper collected from the 1950s to 1998. One population had been commercially fished since the late 1800s. The other was a ’virgin’ population, being subjected to subsistence and recreational fishing only until the scale collection began.

Adcock and colleagues found that the virgin population from Tasman Bay on New Zealand’s South Island had suffered an unexpected decline in genetic diversity, starting from the time it began to be commercially exploited in the 1950s.

The other population, from the North Island’s Hauraki Bay, showed no decline in genetic diversity in the nearly 50 years to 1998.

The paper reports that the Tasman Bay’s effective population size (the number of fish in the population capable of breeding) is 100,000 times fewer than its total number, and several orders of magnitude lower than expected.

"In Tasman Bay, commercial fishing has often reduced total numbers to as low as about one million. This leaves only a few hundred fish to contribute to the next generation, a dangerously low genetic base from which to sustain a population," says Adcock.

Less diversity means less adaptability

"With a high effective population you can retain a large amount of rare genetic variation. Such variation is lost as numbers decline. A rare variant may not play a significant role in the current environment, but if a fish population loses a large number of these genes, such as happened in Tasman Bay, they risk losing the ability to adapt to changes such as global warming, pollution and human induced changes to predator and prey populations," he says.

Adcock points to recent assertions that ocean warming is suspected of causing recruitment failure of cold-adapted North Sea cod.

"Until now nobody suspected that any loss of diversity was happening as it was thought that even in over-fished populations where their numbers are still be in the millions, that there would still be a sufficiently large effective population to prevent declines in genetic diversity," says Adcock.

"A population of several million may actually be in danger of losing genetic variability, which may have long-term consequences," he says.

"Genetic diversity should become a management consideration in many exploited marine species. Many fully exploited or over-fished stocks may be already suffering loss of diversity.

"We don’t know yet the minimal level of genetic diversity required to sustain a commercial fishery long-term, but there is enough evidence now to suggest we need to be cautious and begin to reassess our understanding of fishery management and the sustainability of the industry."

How genetic diversity was measured

To assess the loss of genetic diversity, Adcock and his colleagues studied seven regions of the snapper’s chromosomes, known as microsatellite loci, which are highly variable and mutate at high rates.

The high rates of mutation in microsatellites produce the levels of variation required for researchers to work out how long ago two or more populations or species diverged from a common population or ancestor. In this case, Adcock and colleagues used this variation to assess the changes in genetic diversity over time.

The Tasman Bay population showed a significant decline in diversity in six of the seven loci.

To explain why Hauraki Gulf failed to show any loss of genetic diversity, Adcock contends that the genetic variation had already been lost in the early years of intensive fishing, prior to 1950.

"Hauraki Gulf is a larger population than Tasman Bay and should naturally retain more genetic variation. When the study began, however, its variation was lower than Tasman Bay’s," he says.

Adcock believes the findings open up exciting possibilities of further research and collaboration with the various fishing industry bodies.

"A close collaboration between fishery biologists, geneticists and the fishing industry would be required to carry out research into the biology and behaviour of marine species and their possible implications for fisheries management and conservation," he says.

Adcock’s colleagues from Hull University (UK) were Lorenz Hauser (now at the University of Washington), Julio Bernal Ramirez and Gary Carvalho, and from New Zealand, Peter Smith of the National Institute of Water and Atmospheric Research.


More information

Dr Greg Adcock
University of Melbourne
Telephone +(61 3) 8344 4346/4351 or 9434 1844
E-mail gjadcock@unimelb.edu.au

Jason Major
Media officer, Communications and Marketing
The University of Melbourne
Telephone +(61 3) 8344 0181 or 0421 641 506
Fax +(61 3) 9349 4135
E-mail jmajor@unimelb.edu.au

Jason Major | EurekAlert!
Further information:
http://www.unimelb.edu.au/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>