Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene research warning for commercial fishing

13.08.2002


Commercial fishing practices can reduce genetic diversity in fish populations, possibly threatening their productivity and adaptability to environmental change, new research has found.



An Australian zoologist now at the University of Melbourne, along with colleagues from the United Kingdom and New Zealand, was the first to record a decline in the genetic diversity of a commercially exploited marine species.

Their findings, published in the latest volume of the "Proceedings of the National Academy of Sciences", shout a warning that could force a rethink to current fisheries management and the research focus into sustainable fishing.


Dr Greg Adcock analysed the DNA found in scales preserved from two populations of New Zealand snapper collected from the 1950s to 1998. One population had been commercially fished since the late 1800s. The other was a ’virgin’ population, being subjected to subsistence and recreational fishing only until the scale collection began.

Adcock and colleagues found that the virgin population from Tasman Bay on New Zealand’s South Island had suffered an unexpected decline in genetic diversity, starting from the time it began to be commercially exploited in the 1950s.

The other population, from the North Island’s Hauraki Bay, showed no decline in genetic diversity in the nearly 50 years to 1998.

The paper reports that the Tasman Bay’s effective population size (the number of fish in the population capable of breeding) is 100,000 times fewer than its total number, and several orders of magnitude lower than expected.

"In Tasman Bay, commercial fishing has often reduced total numbers to as low as about one million. This leaves only a few hundred fish to contribute to the next generation, a dangerously low genetic base from which to sustain a population," says Adcock.

Less diversity means less adaptability

"With a high effective population you can retain a large amount of rare genetic variation. Such variation is lost as numbers decline. A rare variant may not play a significant role in the current environment, but if a fish population loses a large number of these genes, such as happened in Tasman Bay, they risk losing the ability to adapt to changes such as global warming, pollution and human induced changes to predator and prey populations," he says.

Adcock points to recent assertions that ocean warming is suspected of causing recruitment failure of cold-adapted North Sea cod.

"Until now nobody suspected that any loss of diversity was happening as it was thought that even in over-fished populations where their numbers are still be in the millions, that there would still be a sufficiently large effective population to prevent declines in genetic diversity," says Adcock.

"A population of several million may actually be in danger of losing genetic variability, which may have long-term consequences," he says.

"Genetic diversity should become a management consideration in many exploited marine species. Many fully exploited or over-fished stocks may be already suffering loss of diversity.

"We don’t know yet the minimal level of genetic diversity required to sustain a commercial fishery long-term, but there is enough evidence now to suggest we need to be cautious and begin to reassess our understanding of fishery management and the sustainability of the industry."

How genetic diversity was measured

To assess the loss of genetic diversity, Adcock and his colleagues studied seven regions of the snapper’s chromosomes, known as microsatellite loci, which are highly variable and mutate at high rates.

The high rates of mutation in microsatellites produce the levels of variation required for researchers to work out how long ago two or more populations or species diverged from a common population or ancestor. In this case, Adcock and colleagues used this variation to assess the changes in genetic diversity over time.

The Tasman Bay population showed a significant decline in diversity in six of the seven loci.

To explain why Hauraki Gulf failed to show any loss of genetic diversity, Adcock contends that the genetic variation had already been lost in the early years of intensive fishing, prior to 1950.

"Hauraki Gulf is a larger population than Tasman Bay and should naturally retain more genetic variation. When the study began, however, its variation was lower than Tasman Bay’s," he says.

Adcock believes the findings open up exciting possibilities of further research and collaboration with the various fishing industry bodies.

"A close collaboration between fishery biologists, geneticists and the fishing industry would be required to carry out research into the biology and behaviour of marine species and their possible implications for fisheries management and conservation," he says.

Adcock’s colleagues from Hull University (UK) were Lorenz Hauser (now at the University of Washington), Julio Bernal Ramirez and Gary Carvalho, and from New Zealand, Peter Smith of the National Institute of Water and Atmospheric Research.


More information

Dr Greg Adcock
University of Melbourne
Telephone +(61 3) 8344 4346/4351 or 9434 1844
E-mail gjadcock@unimelb.edu.au

Jason Major
Media officer, Communications and Marketing
The University of Melbourne
Telephone +(61 3) 8344 0181 or 0421 641 506
Fax +(61 3) 9349 4135
E-mail jmajor@unimelb.edu.au

Jason Major | EurekAlert!
Further information:
http://www.unimelb.edu.au/

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>